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SEMINAR ON THE USE OF COMPUTERS IN  

ENGLISH LANGUAGE RESEARCH 

September.13-l5 1982, Universrty of Stockholm, Sweden 

This semznar - the thlrd in the series starting with the Bergen 
semlnars in 1979 and 1981 - was organised by Magnus Ljung, Department 
of English, University of Stockholm. Papers were read by academics 

from a number of different research teams working with corpora of 

machine-readable texts. The papers are listed below, with a short 

outline of the main points raised (based on a report by Eric Atwell, 

University of Lancaster). The two contributions by the Lancaster 

group l7 and 10) are reproduced in full in this issue of ICANE News. 
Stig Johansson's paper (8) is to appear in Computero and t h e  Humani- 

ties. There are also plans to publish papers from the seminar in an 

issue of StockhoZm Popers in EngZiah Language ond L i t e r a t u r e .  The 

participants agreed to meet again May 30 - June 1, 1983, in Nijmegen. 
For information on the forthcoming seminar, contact Jan harts, 

English Department, University of Nijmegen, Erasmusplein 1, 

6500.HD Nijmegen, Holland. 

(1) Henry KuEera, Brown University 

"Comments on the Brown Corpus" 

HK talked about his forthcoming book (CO-authored with W. Nelson 

Francis), containing lemmatized word frequency lists, and many 

interesting new statrstics gleaned from the gramatlcally tagged 

Brown Corpus. For example, 'informative' prose has many more words 

per sentence, on average, than fictional texts, b u t  we find roughly 

the same number of predicates per sentence (so 'informatrve' prose 

sentences are made very long by complex noun phrases). HK also 

discussed his recent work in the field of Word Processing. Many IiP 

packages currently available include a 'spelling-check' feature 

which compares each word in e text with a Lexicon of valid words, 

and flags words not found as probable misspellings; HK has been 

developing an algor~thm whlch suggests corrections, that is, given 

an 'invalid' word, it flnds the nearest match in the lexicon. His 



program will also be able to detect certain spelling-errors which 

current WP programs miss: certain 'valid' words are flagged if they 

arc incompatible with their syntactic contexts (e.g. my in I my con- 

e i d e r ) .  

( 2 )  Antoinette Renouf, University of Birmingham 

"Aspects of the Building of a Large Computer-Held Corpus of Text' 

AR reported on the collection of English texts at the University of 

Birmingham, and the computing facilities they have available during 

its compilation. The Birmingham Corpus consists mainly of written 

texts, but also includes about one and a half million words of 

spoken English. The current size is over ten million words, and it 

is still growing! However, in 1981, a Subcorpus of six million words 

(1.5M spoken, 4.5M written) was separated out, to act as a static 

'Interim' Corpus for the production of concordances, etc. These texts 

are mainly British English (c 70%), and the remainder is mostly 

American English. There is no poetry, nor any 'technical' language; 

and the style is predominantly 'neutral' in formality. Most of the 

genres found in the LOB and Brown Corpora are represented in the 

Birmingham Corpus (except Category J), although no rigorous sampling 

technique has been used in selecting the texts to be added; the 

main criterion is simply that 'texts are chosen to add to the variety 

and completeness of the Corpus'. Unlike the LOB and Brown Corpora, 

which represent the English of a fixed period in time 11961). the 

Birmingham Corpus is being continually updated as more and more texts 

are added; almost all the texts were written after 1960, and most 

belong to the late 70s and later. 

Most texts were added to the Corpus using a Kurtzweil optical Scanner 

which could 'read' books directly; however, the performance was 

erratic. Another source was 'dump tapes' from computer typesetting 

of newspapers, etc. Concordancing was another big prohlem; they used 

the COCOA package, and hired the ICL 1900 Mainframe for exclusive 

use for a couple of weekends: 



131 John Sinclair, University of Birmingham 

"The Implications for Linguistic Research of Access to a Large 

Computer-Hold Corpus of Text' 

In this talk, JS explained why he was building an 'open-ended' Corpus, 

with few restrictions on size or subject-matter (in contrast to the 

LOB and Brown Corpora). He argued that linguists still have no com- 

plete or adequate theory of language; and any restrictions in the 

design of a Corpus might tend to bias us towards one particular 

theory. Work has begun on analysing collocation lists, but at Birming- 

ham they are not interested in merely collecting statistics: they 

a150 want to know why certain patterns occur in language. For example, 

many words (e.g. matter1 could theoretically be used as a verb or a 

noun, hut it turns out that in actual usage one of these two often 

predominates to a marked degree ( e . g .  of 1160 occurrences of rnntter, 

only 173 are verbs (and of these, all but 3 are negatives, mainly 

it d o e s n ' t  mattsrll. At Birmingham JS is trying to explain why such 

things happen in usage; but at the moment, there is no theoretical 

framework to fit such explanations into. Instead, they run the risk 

of ending up with an open-ended list of unconnected 'theorems', such 

as "questions involving the word matter are usually rhetorical". 

The selection of texts to be added to the Birmingham Corpus is 

deliberately free and fairly unrestricted, since, in a sense, they 

cannot be sure in advance just what they are looking for. JS ended 

by saying that linguists working on Corpus-based research need to 

think carefully about the direction and purpose of their research; 

corpus-based linguistics at present lacks a clear general theory or 

set of guidelines. 

14) Jan Hultgren, University of Stockholm 

"3RIP: An Interactive Text Data Base System" 

3RIP (pronounced "thrip"1 is a system for storing and accessing 

large amounts of data, such as a corpus of English texts. A data 

base is subdivided into records, and each record has an extensive 

Reference Key to speed up and simplify sort and search operations. 

An application of 3RIP of particular interest here is BLOB, an 

implementation of the (untaggedl Brown and LOB Corpora. In BLOB, 

each Category is treated as an independent data base (30 in all), 



and each sentence is 2 Separate record. The text is divided up into 

sentences rather than 'lines' as in the original Brown and LOB 

Corpora because this is more useful; e.g. in KIYIC concordances, it 

is more useful to be given a complete sentence context. 

3RIP has many commercial, academic and other applications. The 

largest 3RIP application at present comprises some 1.2M references 

(more than 1000 million characters of text) to scientific articles; 

this is available commercially in merica. The smallest 3RIP 'Corpus' 

is a Shakespeare text of a few hundred records at Stockholm Universi- 

ty. 

(5) Benny Brodda, University of Stockholm 

"The TAGGER: Presentation of a Tagging Program" 

A technical problem in tagging programs is how to link tags with 

their corresponding syntactic units. In word-tagging, these units 

are the words, but in theory the term 'tagging' could be used to 

cover higher levels as well, with 'tags' assigned to larger constitu- 

ents. 

The TAGGER is an interactive semi-automatic tagging system which 

allows tags to be linked to words in a number of different ways. One 

method is to have two separate files, one containing words only, and 

the other containing tags only; corresponding tag and word have the 

same record reference number, and the same position within that 

record. Another method is to have only one file, with the tag immedi- 

ately after the word (with a separator, /, hetween the two). A third 
format has a line of words with a line of tags immediately following 

(each tag is immediately below its corresponding word). These three 

alternatives each have different advantages; for example, the first 

format takes up less space in computer memory, but the third format 

is much more 'readable' to humans. 

The TAGGGR can take frles in any format as input, and can produce 

files of any format as output. Initially, there wlll only be 'dummy' 

tags; the linguist must then go through the text interactively, 

nlakrng taqging decisions. Initially all 'dummy' tags etart with a 

lower case letter; if any are 'accepted' or 'corrected' by the 

linguist, this is signalled by changing the initial letter to 



upper case. The TAGGER also takes a Lexicon as input; this is a 

list of words and/or word-endings, each followed by one or more tags. 

The TAGGER uses this Lexicon to suggest tags to replace 'dummy' tags. 

However, unlike the LOB and Brown tagging systems, The TAGGER does 

not take syntactic context into account. 

(61 Magnus Ljung, University of Stockholm 

"SEMTAG: Semantic Tagging of the Brown and LOB Corpora'' 

HI. talked about his project: the semantic tagging of a collection 

of texts from Categories A, G, J, and N (c 200,000 words in all). 

Unfortunately, unlike syntactic tagging, semantic tagging has no 

obvious tagset 'given'; there is no clear, closed set of 'semantic 

primitives'. Instead, ML used the classification system found in 

dictionaries. Each word was marked with its 'sense number' according 

to the Longman Dictionary availahle on magnetic tape. For example, 

reoZised in The!, ~ e o Z i n e d  t h a t  he w o o  d ~ u n k  might be REAtIZE2. If a 

dictionary entry included two or more homonyms, then the homonym- 

number was given first; e.g. centre might be tagged CENTREZSH 

(meaning '3rd sense of 2nd homonym of centre' - note that S is just 
a separator!. 

Semantic tagging of this kind tends to involve much more subjective 

decision-making by linguists than the grammatical tagging of the 

Brown and LOB Corpora. One interesting fact that NL has found so 

far is that Longmans generally order the senses of a word correctly 

according to their frequency of occurrence: sense 1 is by far the 

most commonly used, followed by sense 2, and so on. In other words, 

the frequency statistics agree very well with the intuitions of 

Longman's lexicographers! 

The tagging 50 far has been entirely 'manual', using The TAGGER 

described above. ML would like an automatic semantic tagging system 

analogous to the automatic grammatical tagging systems of Brown and 

LOB; but he has no idea yet just how this might work (since there 

are no obvious patterns in the semantic sense-numbers). 

Unfortunately, ML had not been able to collate any statistics or 

draw any conclusions from the tagged subcorpus yet, since he has been 

preoccupied wlth the practical problems of actually getting the 

SU ~ C O ~ P U S  tagged. However, the outlook seems promising. 

5 



(7) Geoffrey Leech, University of Lancaster 

"Progress Report from the Lancaster Project (l)' 

GL described the progress made so far in the project to grammatically 

tag the LOB Corpus. Each word in the Corpus is to be assigned a tag 

from a closed set of 134 (e.g. JJ=adjective, NN=singular noun, etc.). 

Unlike ML's Semantic Tagging, in the Lancaster Tagging project nearly 

a11 tagging decisions are made automatically, by a suite of programs. 

GL described the successive steps in the grammatical tagging process, 

and talked about the programs in the Tagging Suite. 

The first step in the tagging procedure is Manual Pre-editing: 

various classes oE words which would prove to be problematic for the 

Tagging Suite are dealt with 'by handV, that is, decisions are made 

by a [human) linguist. In fact, very few words actually require any 

'manual pre-editing': the btggest problem was words beginning with 

a capital letter (the first word of a sentence must generally be 

converted to lower case) .  

Next, the text is 'verticalized': a program writes each word onto a 

separate line of its own. Then, a program called WORDTAG adds a list 

of one or more possible tags to each word (e.g. "go VB/NNq', i.e. the 

word go can be a verb or a noun). WORDTAG adds this list of possible 

tags to a word without looking at the context. Occasionally, however. 

this is necessary: certain idiomatic sequences of words require 

'syntactically uncharacteristic' tags (e.g. one is generally tagged 

CD1 (CarDinal l), and anoiher is generally tagged DT (singular 

DeTerminer), but the idiomatic combination one a n o t h e r  is a 

reflexive personal pronoun (PPLS). The next program, IDIOMTAG, deals 

with such special cases. The final stage in the automatic analysis 

is CHAINPROBS; this looks at the set of possible tags with each 

word, and works out the 'relative likelihood' of each tag, by 

looking at the 'immediate syntactic context'. 

After the Tagging Suite has run, a Manual Postediting stage is 

necessary to check the decisions made by the programs. In c 97% of 

words, the tag chosen as 'likeliest' by CHAINPROBS is actually the 

correct one; manual correction is naeded in the remaining c 3%. 

(Sec furtller the paper by Geoffrey Leech et oz. in this issue of 

I C A M 3  N e w o . )  



(8) Stig Johansson, University of Oslo 

"Word Frequency and Text Type - Some Observations Based on the LOB 
Corpus of British English Texts" 

The LOB Corpus is subdivided into Categories, according to the type 

of text; SJ has been studying statistical differences in vocabulary 

between the different genres. The most striking contrasts were 

revealed when comparing the vocabulary of Category J (learned and 

scientific English) with that of Categories K-R (fiction); the other 

texts in the LOB Corpus were grouped under the broad headings 

'newspapers' (Categories A-C), and 'miscellaneous ~nformativc prose' 

(Categories D-HI. 

SJ looked at the most frequent words in each of these four genres. 

A 'distinctiveness coefficient' can be calculated, indicating 

whether a word is unusually frequent in one particular genre; for 

example, words like thuo, therefore, etc. arc much more frequent in 

J than in K-R. This fact is not really so surprising; but SJ found 

various other statistics which are not so obvious, for example: 

J places more importance on NOUNS, whereas VERBS are more important 

in K-R; fiction texts are more 'singular prone' (i.e. the ratio of 

singular to plural nouns is significantly higher); personal 

pronouns are most common in fiction, except w e ;  possessive and 

reflexive personal pronouns are also much commoner in K-R than in J, 

except its, oar, their, itaetf, end theniseZves;  and articles the 

and on are significantly more frequent in J, but article o is 

significantly mare frequent in K-R! 

(9) Knut Hofland. Norwegian Computing Centre far the Humanities 

"Implementation of the Lancaster Tagging Programs on a Non-Corpus 

Text" 

The LOB Corpus Grammatical Tagging Program Suite described by GL ( 7 )  

was designed specifically to tag the texts of the LOB Corpus. Even 

in its 'raw' state before the automatic analysis, the Corpus contains 

various markers not found in ordinary texts (e.g. the start of each 

sentence is marked with a speclal symbol; headings and headlines are 

marked; etc.). Therefore, KH decided it would be interesting to see 

how well the LOB Tagging Suite could deal with something completely 



different. The text he chose was the play Look Back in Anger by 

Osborne; the LOB Corpus contains no plays, so this would he an added 

d~fference. 

KH first described various technical changes, needed to run the 

programs on a UNIVAC computer instead of an ICL machine. To circum- 

vent the Manual Pre-editing stage (see (71). KH wrote a program to 

deal with word-initial capitals automatically; this resulted in a 

number of errors (e.g. I was converted to lower case at the start 

of a sentence), but saved time. 

The test run was very successful; c 908 of words were tagged correctly 

by the LOB Tagging programs in their original form. Minor changes 

could improve this success rate; clearly, KH had shown that the LOB 

Tagging Program Suite can be used to grammatically tag an&{ English 

text with a high degree of accuracy. 

l 1 0 1  Eric Atwell, University of Lancaster 

"Progress Report from the Lancaster Project (21" 

GL had briefly outlined the programs of the LOB Tagging Suite; EA 

explained in greater detail how the 'relative likelihood' of a tag 
is calculated. This is done using a general formula, which takes 

into account the word that the tag is assigned to, and the 'inmediate 

syntactic context': the tag immediately before and the tag immediate- 

ly after the current tag. If either of these tags are 'ambiguous', 

then two different fonnulac are used to calculate 'relative likeli- 

hood'. In almost all cases, both formulae agree as to which tag is 

likeliest with a given word. 

This method of probabilistic analysis is new to linguistics; EA 

went on to mention some of its other potential applications. One of 

these is in Automatic Spelling-checking. Many Word Processors include 

a facility to check the spellings of words in a text. but these 

programs simply look up each word in a dictionary: syntactic context 

is not taken into account at all. This means that many glaring errors 

can still slip through; e.g. in I om able to prophecy the w h e t 7 > e r ,  

no errors are detected by simple dictionary-lookup methods because 

p~ophucy and w h e t h e r  are valid words. However, syntactic analysis 

can show that these words are incompatible with their syntactic 



context. EA has alter~d the programs in the LOB Tagging Suite to 

carry out such 'spelling-check syntactic analysis' on a small sample 

text. Further research is under way to create a generally-applicable 

W? syntax-analyser and -checker. (See further Eric Atwell's article 

in this issue of ICAME Newn.1 

(111 Tore Jansson, University of Stockholm 

"Simulation of Phanotactic Word Division in Perception'' 

The 'Corpus' TJ is working on is in fact just five lines of phonetic 

transcription. This test 'Corpus' is input to a program, which first 

inserts all p o t e n t i a z  word-boundaries: for example, the phrase o e e  

his p o i n t  will be represented as "s-i:-h-1-z-p-01-n-t". The program 

then uses a set of rules to try to divide this continuous sequence 

into separate words. One type of rule r e p l a c e 8  a hyphen with a blank, 
if a word boundary is required; for example, one rule states that 

"h" should begin a word. so the hyphen before "h" must be replaced 

With a space. The second type of rule d e l e t e o  a hyphen where a word 

boundary cannot occur; for example, there are rules which state, in 

essence, that each word must have at least one vowel, so the hyphen 

in "3-1: h. .." is deleted. In the final output, the text should be 
correctly divided into words, with no hyphens remaining (i.e. "si: 

h12 polnt"). This is not always the case, as often some hyphens 

remain, denoting an 'ambiguity'; this type of ambiguity may be 

resolvable by syntactic analysis. 

(121 Jan Svartvik and Gunnel Tottic, Universities of Lund and Uppsala 

'English in Speech and Writing: Presentation of a Project" 

"English in Speech and Writing" rs a research project in progress at 

the Universities.of Lund and Uppsala, based on two corpora of 

English texts: the LOB Corpus of written British English and the 

London-Lund Corpus of spoken British English (LLC). JS talked about 

how the LLC was compiled. Or~ginally, spoken material was collected 

and transcribed at Un~versity College London by researchers workinq 

on the Survey of English Usage. The Survey of Spoken English, 

with which JS is pr~ncipally concerned, is a slater project of the 

Survey of English Usage; ~ t s  primary a m  was to convert the spoken 



material into machine-readable form, for use in computational analy- 

sis. JS reported that this has now been completed, and that the 

London-Lund Corpus is available for research, the whole corpus on 

magnetic tape, and about one third of it, also in printed form, as 

a book. The main polnts raised by JS concerned the grammatical 

analysrs of the London-Lund Corpus, which includes both word-class 

tagging and higher-level syntactic tagging (in which the basic unit 

of analysis is not the sentence but the tone unit). 

GT reported in greater detail on the English in Speech and Writing 

project. A 'Minicorpus' of 10,000 words and a 'Midicorpus' of 

100,000 words (available on tape) have been compiled. Both contain 

a mixture of texts Erom the LLC and the LOB Corpus. The distinction 

between written and spoken texts is strengthened by the exclusion 

of LOB fiction texts (which contain dialogue). Some major areas 

which are currently being investigated in the project are modality, 

negation, and cohesion in speech and writing. 

(13) Mats Eeg-Olofsson, University of Lund 

"An Experiment in Statistical Taggingr' 

Researchers in Lund have 'word-tagged' part of the London-Lund Corpus 

'by hand', that is, with a linguist making all tagging decisions 

interactively. ME used these tagged texts as the basis for an 

experimental statistical model for taggin". He designed an experimen- 

tal automatic tagging program which was i n t e g ~ o t e d  (it can take into 

account syntactic, morphological, and other levels of information), 

p r o b a b i l i a t i c  (rather than choosing one analysis to the exclusion 

of all other possibilities, it o r d e r s  all analyses according to 

relative likelihood), h a i i o t i c  (words are not tagged independently, 

but according to context), and formm2 (testable by standard statisti- 

cal methods). 

In designing his experimental program, ME Eirst observed the pattern- 

ings that occurred in the tagged texts. The aim was to apply Bayes' 

formula, and write a probability function which 'encapsulated' the 

tag-petternings found. To write this probability function, ME first 

had to make some initial assumptions. He assumed that tag-pair 



collocation was an important indicator of patternings, and that 

individual tag-pattern palrings were Independent 'events', so that 

the conditional ~ndependence assunlption formula could be applied 

(p = pattern, t = tag): 

?(p[ll ... p[nl / t[ll ... t[n]l = K  ~ ( ~ [ i ]  / t[i]) 
i = l.." 

In other words. ME assumed that the tags on either side were a major 

factor in working out the likelihood of the 'target' tag. Another 

factor to be taken into account was the overall relatzve likelihood 

of the 'target' tag appearing wrth the partzcular word being tagged. 

The tag-set used was analogous to the one used in the LOB tagging 

project, with about 100 tags denoting 'traditional' surface syntactic 

Word classes. ME noted that the 'graphic word' is not the only 

Pattern indicative of tagging; suffixes (e.g. '...-ly") or phrases 

(e.g. "as well") may also be important patterns. ME'S tagging program 

could be described as equivalent to a Markov chain process or a 

probabilistic Finite State grammar. 

TO run the experimental program, ME first had to extract a Tag-Pair 

Frequency Table from a pre-tagged text. Interestingly, he found that 

nosk possible tag-pair combinations never actually occurred in the 

text: out of a theoretically possible c 10,000 tag-pair combinations, 

only 1487 actually occurred in the 5000-word text. EIE also needed a 
tagged wordlist, stating which tags could occur with each word; he 

extracted a wordlilt from the 5000-word text for this purpose. 

The trial run of his program, on the text from which the tag-pair 

statistics and tagged wardlist had been extracted, was very impress- 

ive: the tag chosen as 'likeliest' was correct with 99% of words: 

However, we must remember that this was partly because the tay-pair 

table and wordlist were 'tailor-made' for the particular text. In 

particular, the wozdlist gave many words only one unambiguous tag 

simply because it only ever appeared with that tag in the text: for 

example, if the word b o t h c r  only appeared as a noun in the 

manually-tagged text, then it was unambiguously tagged as a noun in 

the Wordlist. 

To get a more 'realrstlc' success-rate flgurc, ME used the same 

tag-palr statistics table and tagged wordlxst to tag a diffe~snt 

5000-ward text. Thls time, the success rate was c 84%. Host of the 



errors were due to omissions in the simple wordlist. 

Overall, ME'S tagger was very similar to the LOB Tagging Suite, in 

principle at least. However, the type of text it had to deal with 

was very different from that found in the LOB Corpus: the spoken 

English texts contained no punctuation (although they were divided 

up into tone units), and they were full of pauses, indistinct 

passages, phonetic transcriptions of 'unclear' words, hesitations, 

etc. It is interesting that basically the same method of analysis 

can be used for both written and spoken English. 



THE AUTOMATIC GRAMMATICAL TAG61NG 
OF THE LOB CORPUS 

Ceoffrey L e e c h ,  Roger G a r s i d e ,  and Eric A t w e Z Z  

University of Lancaster, England 

In collaboration with the English Department, University of Oslo,' 

and the Nowegian Conlputing Centre for the Humanities, BergenS2 we 

have been engaged in the automatic grammatical tagging of the LOB 

(Lancaster-Oslo/Ber~l Corpus of British English. The computer 

programs for this task are running at a success rate of approximately 

9 6 . 7 ~ , ~  and a substantial part of the 1,000,000-word corpus has 

already been tagged.4 The purpose of this paper is to give an account 

of the project, with special reference to the methods of tagging we 

have adopted. 

1 OVERVIEW OF THE PROJECT 

To see the project in its overall context, w e  must give some attention 

to the preliminaries which preceded the tagging itself, and also to 

the follow-up work which we intend to undertake when the tagging is 

complete: 

Pig. 1 

rp--A---1 
I 

r---c- --1 
I I , Preliminary I----$ Follow-up I 

Data Analysis Data Analysis 
L_- - -- - J L------_I 

1.1 Preliminaries 

The first stage of our work was collecting and analysing data from 

the Tagged Brown Carpus. Our purpose was to make use of, and at the 

same time to improve an, the automatic tagging of the Brown Corpus 

(undertaken at Brown University 1971-8) .= The Tagged Brown Corpus was 
kindly made available to us by Henry KuEera and Nelson Francis, who 

also provided us With a copy of the automatic tagging program TAGGIT 

-i written by Greene and Rubin (1971). An exploratory run of the program 



on the LOB Corpus suggested that a new approach to tag selection 

would be needed if we were to improve substantially on TAGGIT's 

performance. For comparability with the Tagged Brown Corpus, we had 

decided to use largely the same set of tags as were used by TAGGIT; 

but in practice some changes were advisable, and as a result of these 

changes, the new Tagset (see Appendix AI consisted of 134 tags (in- 

cluding punctuation tags), as against Brown's 87. For example, we 

found it desirable to introduce a number of additional tags ("NPL", 

"NPT", "NNP", "JNP") where Brown had used only the one tag "NP" 

(proper noun). But where changes were made, we have been careful to 

preserve general comparability with the Brown Corpus, so that when 

the LOB tagging is complete, it will be possible to make systematic 

comparisons between the American and British corpora. 

The chief advantage we derived from the Brown tagging project, 

however, was that we were able to make substantial use of the Tagged 

Brown Corpus itself as a database for our own Automatic Tagging. From 

lists provided by the Norwegian Computing Centre for the Humanities, 

our 0510 ~olleagues Stig Johansson and Mettc-Cathrine Jahr derived 

lists of word-tag associations and suffix-tag associations which, 

after revision, formed the kernel of our Tag-Assignment program (see 

3.1 below). Also, by means of a group of Context Collecting programs, 

we were able to derive from the corpus frequency lists of tag- 

sequences, 2nd these were later adapted for inclusion in our Tag- 

Selection program (see 3.21. 

1.2 Follow-up work 

Just as the tagging of the Brown Corpus provided us with a headstart 

in our own project, so after the tagging of the LOB Corpus it will be 

possible to use the data derived from the LOB tagging project, in- 

cluding the tagged Corpus itself, as an input to further automatic 

tagging programs, which will improve on our programs just as these 

were an iinprovement on the Brown programs. Corpus-based automatic 

language analysis is one area of linguistic research where results 

are cumulative, so we hope, in a follow-up to this project, to revise 

and imprr,-ie the programs Eor implementation on further corpora. For 

this to happen, however, various frequency listings must be obtained 

from the Tagged LOB Corpus. Such listings (in particular, a lemma- 

tised word-frequency listing of the LOB Corpus) will also he useful 



for other research purposes, e.g. far comparison with the Brown Corpus 

and with the London-Lund Corpus. 

2 THE OVERALL PROCESS OF TAGGING 

Having looked briefly at stages (AI and (C)  in Fig. 1, we may now 

examine the middle box (01, dealing with the overall tagging process. 

The contents of this box we again divide into three stages: 

As may be expected with programs acting on unrestricted language 

input, the automatic tagging programs require both a pre-editing 

phase, where the human investigator prepares the corpus for input, 

and a post-editing phase, where he corrects any errors made by 

automatic tagging. Manual pre-editing and post-editing are both, 

however, carried out with the aid of computer programs. We give a 

brlef account of these stages (A and C in Fig. 21 before dealing with 

the automatic tagging programs themselves. 

At the start of the process, the Raw Corpus (the Corpus in its un- 

tagged orthographic form) exists in a "horizontal" format; i.e. it 

reads from left to right in the normal way. A Verticalization Program 

converts this corpus into a 'Vertical Corpus" in which one word occurs 

beneath another in a vertical column. At the same time, the Verticali- 

zation Program makes automatic changes which will later help the 

tagging. These include supplying missing punctuation, splitking en- 

clitic words (n't, 'ZZ, etc.] from their predecessors, changing 

capitol letters to lower case at the beginning of sentences, in 

headings, etc.; and marking foreign words, formulae, and other 

exceptional features of the text. The Vertiealiration Program also 

creates a number of colun~ns alongside the text, so that various kinds 

of information (orthographic, lexical, syntactic1 can be recorded for 

future users of the corpus. 



When the Verticalization of the corpus takes place, another set of 

programs produces "Editliste" of particular text features which have 

to be checked by a human editor to see whether they have to be altered 

in order to be suitable input to the Automatic Tagging. The most 

important lists are those of "CAPITALS" (non-sentence-initial words 

beginning with a capital letter) and "UNCAPITALS" (sentcnce-initial 

words whose capital letter will have been changed to lower case by 

the Verticalization Program). For example, if a sentence begins with 

a proper name such as John, the Program will have changed this to 

l ,  and a manual editor will then have to change it back again. The 

reason for these changes in capitalization is that the Automatic 

Tagging programs make use of word-initial capitals in deciding what 

kind of tags to assign to a word (most words beginning with a capital 

end up heing tagged as proper names: see 3.1 and Appendix D]. 

Although the majority of pre-editing changes are made automatically 

by the Verticalization Program, Pre-editing has proved to be a time- 

consuming process, especially since all pre-editing decisions have 

had to be carefully standardized and entered in a "?re-editing 

Manual". In any further tagging projects, we will try to eliminate 

manual pre-editing, e.g. by enabling the automatic tagging programs 

to accept a word with an initial capital as a possible variant of a 

lower case word. For example, if both Roae and rose occurred in the 

same text, the capital of the former word would be reduced to lower 

case; but if Rose only occurred in the capitalized version, the capi- 

tal would be retained, and the word would be analysed as a proper 

noun. In this way, manual pre-editing could be replaced by automatic 

pre-editing, and any addit~onal errors whlch resulted from thrs would 

simply add to the number of words requiring correction at the post- 

editing phase. 6 

2.2 Post-editing 

Like Pre-editing, post-editing currently has both an automatic and a 

manual aspect. The Vertical Corpus, after automatic tagging, contains, 

alongside each word, one or more grammatical tags, placed in order 

of the~r likelihood of occurring in this context. The tag which the 

proqnams have selected as the correct one is clearly indicated (see 

Fig. 4 below). Thus the task of the manual post-editor is to check 

the decisions made by the program, and to mark any corrections which 



have to be made. With more than a million words to check, this is an 

exceedingly time-consuming task, and it is therefore worthwhile using 

the computer to ease the human editor's task in any practicable way. 

One way of doing this is to present the output in a special form in 

which the text is arranged in two vertical columns per page, the word 

and the tag lying alongside one another for ease of reading. Into 

this "Vertical Output" there is built an additional aid for the post- 

editor: it is passible to set a threshold below which the likelihood 

of error is low enough to be disregarded by the initial post-editor. 

Sample analyses have shown that 60'6 of the text-words are unambiguous- 

ly tagged; that of the 40% which are ambiguously tagged, 64% have a 
7 likelihood, as calculated by the Tag Selection Program (see 3.2) , 

of more than 90%; and that these have only a 0.5% risk of being 

erroneous. This means that over the whole sample 86% of words can be 

unambiguously tagged with less than 1% error. In these relatively 

safe Cases, the output listing simply assumes the one tag to be 

correct, and gives alternative taggings only for the 14% of words 

for which the risk of error is relatively high. A specimen of this 

"Vertical Output" is given in Appendix E. 

This facilitates the first manual post-edit, but to ensure that all 

errors have heen caught, a second stage of manual post-editing will 

take place, this time on a "rehorizontalized" version of the corpus, 

in which each word in a line has a single tag beneath it, as in 

Appendix F. 

Once it has undergone manual correction, this version of the corpus 

will be available for distribution to users. There will also, however, 

be a vertical-format "Rolls-Royce" version of the corpus, which will 

contain all the information about the original text recorded in the 

columns of the Verticalization Program (see  2.1) as well a. the 

grammatical tag of each word. This version is the authoritative 

tagged LOB Corpus, and will enable users to reconstruct the original 

text. For example, if one wants to study the relation between ortho- 

graphy and gramar, this version will preserve orthographic informa- 

tion excluded from the "rehorizontalized" version. 

3 AUTOMATIC TAGGING 

We now turn to the Automatic Tagging programs which form the heart 

of the project, and constitute its main contribution to research. 



once again, the contents of the middle box of the previous diagram 

(B in Fig. 21 must itself be broken down into three logically separ- 

able processes: 

Fig. 3 

AUTOMATIC TAGGING 

IDIOM 
ASSIGNMENT TAGGING SELECTION 

For development purposes, it was convenient to write a separate pro- 

gram for each of these three processes;8 but it would be easy enough 

in principle to combine them all into a single program. Logically 

speaking, the Automatic Tagging divides into Tag Assignment (whereby 

each word in the corpus is assigned one or more possible tags), and 

Tag Selection (whereby a single tag is selected as the correct one 

in context, from the one or more alternatives generated by Tag Assign- 

ment). It was as something of an afterthought that we added to the 

Tag Assignment program (WORDTAG) and the Tag Selection program 

(CWINPROBS) a third, intermediate program (IDIOMTAG) to deal with 

various grammatically anomalous word-sequences which, without intend- 

ing any technical usage of the term, we may call "idioms". 

3.1 Tag Assignment 

The simplest kind of Tag Assignment procedure would be just a look- 

up in a WORDLIST or dictionary specifying the tagls) associated with 

each word. In addition to such a Wordlist, the Brown Tagging Program 

TAGGIT has a SUFFIXLIST, or list of pairings of word-endings and tags 

(for example, the ending -NESS is associated with nouns). We follow 

Brown in this, using a Wordlist of over 7000 words, and a Suffixlist 

of approximately 660 word-endings.' Further, the LOB Assignment 

Program contains a number of procedures for dealing with words con- 

taininr, hypl:cns, words beginning with a capital letter, words ending 

with - X ,  with 'S, etc. The advantages of having a SUFFIXLIST are 

that (a) the WORDLIST can be shortened, since words whose wordclass 

is predictable from their ending can be omitted from it; and (bl the 



set of wards accepted by the program can he open-ended, and can even 

include neologisms, rare words, nonsense words, etc. These advantages 

also apply to the procedures for dealing with hyphenated and capital- 

ized words. 

The Tag Assignment Program reads each word in turn, and carries out 

a series of testing procedures, to decide how the word should he 

tagged. The procedures are crucially ordered, so that if one procedure 

fails to tag a word, the word drops through to the next procedure. If 

none of the tag-assignment procedures is successful, the word is 

qiven a set of default tags. The program's structure can be sumarized 

at its simplest by listing the major procedures as follows (where 

W = the word currently heing tagged): 

(1) Is U i n  t h e  VORDLIST? 

I£ S O ,  assign the tags given in the WORDLIST 

(21 I o  H o number, a a i n g Z e  L e t t e r ,  or  o Z e t t a r  p r e c e d e d  o r  f a t l o w e d  
b y  a number of d i g i t s ?  

If so, assign special tags. 

( 3 )  Doea W c o n t a i n  o hyphen? 

If so, carry out the special procedure APPLYHYPHEN. 

( 4 )  Does W lznve o w o r d - i n i t i n 2  c o p i t n z  ( V I C l ?  

If so, carry out the special procedure APPLYWIC. 

(5) Does W end w i t h  one of t h e  e n d i n g s  i n  t h e  SUFFIXLIST? 

If so, asslgn the tags specified in thc SUFFIXLIST. 

(6) Doeo V  e n d  i n  -S? 

If so, apply an - B  stripping procedure, and check again whether 
W is in the WORDLIST, or failing that, the SUFFIXLIST. If it is, 
apply the tags given in the WORDLIST or SUFFIXLIST, retaining 
only those tags which are compatible with - 8 .  

If not, assign default tags for words ending in - o .  

17) I f  none o f  t h e  above a p p t y ,  assign default tags for words not 
ending in - e .  

APPLYHYPHEN and APPLYWIC are 'macroprocedures' which themselves con- 

sist of a set of tests comparable to those of the main program. For 

further details, see the Flowcharts in Appendices B - D. 



The output of the Tag Selection Program is a version of the Vertical 

Corpus in which one or more grammatical tags (with accompanying 

rarity markers e or % if appropriate)'' are entered alongside each 

word. As an additional useful feature, this program provides a diagnos- 

tic [in the form of an integer between 0 and 1001 indicating the 

tagging decision which led to the tag-assignment of each word. This 

enables the efficacy oE each procedure in the program to be monitored, 

so that any improvement effected by changes in the program can be 

measured and analysed. In this respect, the program is self-evaluating 

It can also he readily updated through revisions to the Tag-set, 

Wordlist, or Suffixlist. 

3.2 Tag Selection 

If one part of the project can be said to have made a particular con- 

tribution to automatic language processing, it is the Tag Selection 

Program (CIiAINPROBSl, the structure of which is described in greater 

detail in Marshal1 (1982). This program operates on a principle quite 

different from that of the Tag Selection part of the program used on 

the Brown Corpus. The Brown program used a set of CONTEXT FRAME RULES, 

which eliminated tags on the current word if they were incompatible 

with tag5 on the words within a span of two to the left or two to the 

right of the current word (W). Thus assuming a sequence of words 

-2, -1, W, +l, +2, an attempt was made to disambiguate W on the 

evidence of tags already unambiguously assigned to words -2, -1, +l, 

or +2. The rules worked only if one or more of these words were un- 

ambiguously tagged, and consequently often failed on sequences of 

ambiguous words. Moreover, as many as 80% of the applications of the 

Context Prme Rules made use of only one word to the left or to the 

right of W. These observstions, made by running the Brown Program 

over part of the LOB Corpus, led us to develop, as a prototype of the 

LOB Taq-Selection Program, a program which computes transitional 

probabilities between one tag and the next for all comhinations or 

possible tags, end chooses the most likely path through a set of 

ambiguous tags on this basis. 

Given a sequence of ambiguous tags, the prototype Tag-Selection 

Program computed all possible comhinatlons of tag-sequences [i.e. all 

possible paths), building up a search tree. It treated each possible 

Tag Sequence or path as a Pirst-order Markov chain, assigning to each 



path a probability relative to other paths, and reducing by a constant 

Scaling factor the likelihood of sequences containing tags marked 

with a rarity marker Q or %. Our assumption was that the frequency of 

tag sequences in the Tagged Brown Corpus would be a good guide to the 

probability of such sequences in the LOB Corpus; these frequencies 

were therefore extracted from the Brown Corpus data, and adjusted to 

take account of changes we had made to the Brown Tag-set. We expected 

that the choice of tags on the basis of first-order probabilities 

would provide a rough-and-ready tag-selection procedure which would 

then have to be refined to take account of higher-order probabilities. 

It is generally assumed, following Chomsky l1957:18-25). that a first- 

order Markov process is an inadequate model of human language. We 

therefore found it encouraging that the success rate of this simple 

first-order probabilistic algorithm, when tried out on a sample of 

Over 15,000 words of the LOB Corpus, was as high as 94%. An example 

of the output of this program (from Marshal1 1982) is given in Fig. 4: 

Pig. 4 

this 

task 

involved 

a 

very 

great 

deal 

of 

detailed 

work 

for 

the 

committee 

In this output, the tags supplied by the Tag Assignment Program are 

accompanied by a probability expressed as a percentage. For example, 

the entry for the word i n v o l v e d  ([VBD]/90 VBN/10 JJ@/O) indicates 

that the tag VBD 'past tense verb' has an estimated probability of 

90%; that the tag VBN 'past participle' has an estimated probability 

of 10%; and that the tag JJ 'adjective' has an estimated probability 



of 0%. The symbol B after J,7 means that the Tag Assignment program has 

already marked the 'adjective' tag as rare for this word lsee Note 10). 

The square brackets enclosing the 'past tense' tag indicate that this 

tag has been selected as correct by the Tag Selection Program. (The 

square brackets are used to indicate the preferred tag for every word 

which is marked as ambiguous; where the word has only one assigned 

tag, this marking is omitted as unnecessary.) 

An improved Tag Select-ion Program was developed as a result of an 

analysis of the errors made by the prototype program. We realised that 

dn attempt to supplement the first-order transition matrix by a second- 

order matrix would lead to a vast increase in the amount of data to 

be handled as part of the program, with only a marginal increase in 

the program's success. A more practical approach would be to concen- 

trate on those limited areas where failure to take account of longer 

sequences resulted in errors, and to introduce a scaling factor to 

adjust such sequences in the direction of the required result. For 

instance, the occurrence of an adverb between two verb forms ( a s  in 

hao r e c e n t l y  viaited) often led to the mistaken selection of WLl 

rather than VBN for the second verb, and this mistake could be correc- 

ted by downgrading the likelihood oE a triple consisting of the verb 

be or hove followed by an adverb followed by a past tense verb. 

Similarly, many errors resulted from sequences such as l i v e  and w o r k ,  

where we would expect the same word-class to occur on either side of 

the coordinator - something which an algorithm using frequency of 
tag-pairs alone could not predict. This again could be handled by 

boosting or reducing the predicted likelihood of certain tag triples. 

A further useful addition to the program was an alternative method 

of calculating relative likelihood, making use of the probability of 

a word's belonging to a particular grammatical class, rather than the 

probability of the occurrence of a whole sequence of tags. This serves 

as a cross-check on the 'sequence probability' method, and appears 

to be more accurate for some classes of cases. These improvements, 

together with the introduction of an Idiom Tagging program lsee 3.3 

below), resulted in an overall success rate of between 96.5% and 97.0%. 

Having tried out the heuristic principle that error-analysis of a 

program's output can be fed back into the program, enabling it to 

increase its accuracy, we anticipate that a further analysis of errors 

after post-edlting of the LOB Corpus will lead to further imprownents. 



3.3 Idiom Tagging 

The third tagging program, which intervenes between the Tag Assign- 

ment and Tag Selection programs, is an Idiom Tagging Program (IDIOM- 

TAG1 developed as a means of dealing with idiosyncratic word sequence% 

which would otherwise cause difficulty for the automatic tagging. One 

set of anomalous cases conslsts of sequences whlch are best treated, 

grammatically, as a single word: for example, in order that is tagged 

as a single conjunction, n s  to as a single preposition, and e a c h  other 

as a single pronoun. Another group consists of sequences in which a 

given word-type is associated with a neighbouring grammatical category; 

for example, preceding the preposition by, a word like invoked is 

usually a past participle rather than a past tense verb. The Idiom 

Tagging Program is flexible in the sorts of sequence it can recognize, 

and in the sorts of operation it can perform: it can look either at 

the tags associated with a word, or at the word itself; it can look 

at any combination of words and tags, with or without intervening 

words. It can delete tags, add tags, or change the probability of 

tags. It uses an Idiom Dictionary to which new entries may be added 

as they arise in the corpus. In theory. the program can handle any 

number of idiomatic sequences, and thereby anticipate likely mis- 

tagqinqs by the Tag Selection Program; in practice, in the prcsent 

project, we are using it in a rather limited way, to deal with a few 

areas of difficulty. Although this program might seem to be an ad 

hoc device, it is worth bearing in mind that any fully automatic 

language analysis system has to come to terms with problems of lexi- 

cal idiosyncrasy. 

4 FUTURE PROSPECTS 

Our present overriding objective (in cooperation with our collabora- 

tors in Norway1 is to complete the grammatical tagging of the LOB 

Corpus by the summer of 1983, and to make it available for research, 

through the Norwegian Computing Centre for the Humanities. We hope 

that its value as a research facility will more than justify the 

research which has Ted to the development of the Automatic Tagging 

programs. But in addition, w e  believe that the considerable success 

of these programs has helped to vindicate the value of corpus-based 

research in the automatic analysis of texts. The strength of computa- 



tional corpus-based research is that the programs have to be designed 

to operate on unrestricted input, and can be progressively enhanced 

by the 'recycling' of data already analysed into the database. 

If resources are available for future research, we hope to eliminate 

manual pre-editing, and to reduce further the percentage of error to 

be corrected in post-editing. One method for reducing error would be 

to derive different tag-pair frequencies from different kinds of text, 

and to use these in a 'fine-tuning' of the transition matrix for 

various styles of input text. For example, the frequencies for 

scientific and for fictional writing can be supposed to differ con- 

siderably, and statistical adjustments of the program to deal with 

these differences can be expected to eliminate additional errors. 

Even so, there will still be errors which cannot be corrected by cn- 

hancement of the present programs. Like KuEera and Francis (see 

Francis 19801, we have found special problems with certain classes 

of ambiguity, where the choice of wordclass requires reference to a 
wide context. Three difficult ambiguities are: 

(i) that between XN and CS (e.g. after can be a preposition or a 

conjunction); 

(ii) that between IN and RP or RI (e.g. in can be a preposition or 

a prepositional adverb); and 

(iii) that between VBD and VBN (e.g. acquired can be a past tense 

verb or a past participle). 

The following example shows the sort of problem which arises with the 

last case: 

... some local authorities ... hove not only carried out a very 
good business deal for themselves but also acquired a beauty 
spot for their people. 

It is notable that if the word houe were omitted from this sentence, 

the word noquired. which is the fourteenth word following it, would 

be changed from a VBN to VBD. This is because c o r ~ i e d ,  which by 

vlrtue of the coordinate construction must be matched by acquired, 

would no longer be marked as the second verb of a perfective (have + 
past participle) construction. In other words, for this disambigua- 

tion a s p a n  of 14 words to the left of the target word is needed. 

Such diffzcultles inevitably lead us to consider the deficiencies of 

word-tagging as  an autonomous level of analysis. The most obviously 



valuable levels of analysis to be added to word-tagging would be 

(a) syntactic analysis or parsing of a corpus; and (bl semantic 

tagging, whereby senses of words, as well as their grammatical cate- 

gories, would be identified. These additional levels, on which work 

with the LOB Corpus has only recently begun,'' would have to be added 

to the LOB Automatic Tagging programs if success in word-tagging were 

to approach 1008. The VBD/VBN anbiguity cited above, for example, 

could be successfully resolved only by a program which carried out 

recognition and tagging of larger-than-word units. There are strong 

reasons, indeed, for believing that the tagging programs will only 

reach their full potential when they are implemented in parallel with 

syntactic and (possibly) semantic analysis programs. These further 

challenges will remain when the present project is completed. 

NOTES 

1 Stig Johansson and Mette-Cathrine Jahr (see Jobansson and Jahr 
1982) have made major contributions to the project in the prepara- 
tion of the WORDLIST and SUFPIXLIST (see 3.11. They are also under- 
taking roughly half of the post-editing. The research at Lancaster 
has been conducted by Ian Marshall, as well as the present authors. 
The Lancaster project lias been supported by the Social Science 
Research Council (Research Grant HR 7081/1). 

2 The Norwegian Computing Centre for the Humanities (director Jostein 
Haugel has provided text processing facilities essential to the 
project. lie have particularly appreciated the programming support 
provided at the Centre by Knut Hofland. 

3 The percentage of 96.7% is based on the post-editing of c. 100 
texts (i.e. c. 200,000 text words, or 20% of the Corpus). These 
texts are from categories B, C, P, G and R, representing a 
varied cross-section of the Corpus. There is little variation in 
the taooino success-rate between different catenaries. The fioure ~ - -~ - -  ~ ~- - - 2 ~ > 

of 96.7% excludes errors An the output which are not due to auto- 
matic tagging (these are chiefly pre-editing errors, and account 
for C. 0.1% of all words). Punctuation tags [see Appendix A) are 
discounted in calculating the success-rate. 

4 Approximately 559 of the Corpus has been automatically tagged by 
November 1982. 

5 Reported in Francis (1980); for results and analysis of the auto- 
matic tagging, see Prancis and Kurera (19821. 

G An experiment carried out by Knut Hofland at Bergen in 1982 gave 
encouraging support to the view that manual prc-editing could be 
dispensed with. The LOB tagging programs were applied to a machine- 
readable copy of John Osbornc's Look U, lck  in Aliyer, a text not in- 
cluded in the LOB Corpus. Automatic pre-processing followed by 



automatic tagging resulted in a success-rate in the region of 90%. 
This was without modifications to the programs themselves, which 
are designed to accept the specially pre-edited text of the LOB 
Corpus.(See p. 7f. above.) 

7 See Marshall l1982:lO-12) for further details. 

8 Each of the three programs was written by a different member of 
the research team: A by Roger Garside, B by Eric Atwell, and C by 
Ian Marshall. 

9 The Brown Wordlist contained c. 3,000 words, and the Brown Suffix- 
list contained c. 450 word-endings. See Johaneson and Jahr (1982) 
on the LOB suffixlist. 

10 The marker d indicates that a tag has (notionally) an intrinsic 
likelihood of 10% or less; the marker $ indicates that a tag has 
(notionally) an intrinsic likelihood of 1% or less. The tags are 
also output in order of likelihood, more likely tags being placed 
to the left of less likely ones. To this extent, the Tag Selection 
program makes use of probabilities. 

11 Roger Garside and Fanny Leech are currently working on programs to 
be applied in the parsing of the LOB Corpus. Manual work on 
semantic tagging is being undertaken at Stockholm by Nagnus Ljung. 
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APPENDIX A: A SELECTION OF TAGS FROM THE LOB TAGSET 

Note 1: The following punctuation tags represent themselves: " "  " ,, " ( " ,  " ' 8 ,  " " 8 "  " ' - V  " * ' V  . , ... , " ) " ,  "." " " W  " . M  " " . , , S  . ,  . ,  , 
Note 2: The letter "S" added to a tag marks it as plural; e.g. "NNS" 

= "plural common noun" 

Note 3: The dollar sign added to a tag marks it as genitive or 
possessive; e . g .  "NNSS" = "genitive plural common noun". 

&F0 

AT 

AT1 

CD 

CD-CD 

CS 

DT 

OTI 

IN 

JJ 

JJB 

NNU 

NN 

NNP 

NP - 
NPL 

NPT 

NR 

00 

PPlA 

PP10 

PP2 

PP3 

QL 

RB 

RI 

RP 

VB 

VBD 

VBN 

VBZ 

formula 

singular article (a, on, every1 

singular or plural article ( t h e ,  no) 

cardinal numeral 

hyphenated pair of cardinal numerals 

subordinating conjunction 

singular determiner 

singular or plural determiner 

preposition 

adjective 

attributive adjective 

unit of measurement unmarked for number (e.g. ft., c c . ,  m.p.h.) 

singular common noun 

singular common noun with word-initial capital (e.g. I r i o i ~ r n a n )  

singular proper noun 

singular locative noun with word-initial capital (e.g. Square) 

singular titular noun with word-initial capital (e.g. M r .  Lord1 

singular adverbial noun (e.g. north, home) 

ordinal numeral 

I 

me 

you 

it 

qualifier (e.g. v e r y ,  more) 

adverb 

prepositional adverb (homograph of preposition) 

prepositional adverb which can also be a particle 

verb (uninflected form) 

past tense verb 

past participle 

verb (3rd person singular present tense) 



W P ~ I X  B: ~eneral flowdurt of Tag A s s i v t  hogram (see 3.1) 

Rarpmber and strip 
i f  m1 1 

Tag as letter. 
digit, fonrmla. 
etc.2 

Apply tags £ran 

KnmLISP 

TN3 
M e t e  "stardad" 
prefix (if any) 

APPLwYEJEm 

(see A l T m 3 . X  Cl 

a t m n ,  else NNS VBZ Ff 
. 

(Ff rnne, then 
-B, else t<N VB JJ 
. 

I 
If gclutrve, retan tags that talre 5 ( i f  m e ,  then m$ or NNS$) F 

& 



NOTES 

1 if the word ends in " 8  apostrophe" then strip the apostrophe; if 
the word ends in "apostrophe a" then strip both characters (and 
any preceding full-stop). 

2 "Non-words" are the following: 

a letter followed by zero or more digits l0 to 91, possibly 
followed by a single, double, or triple prime, tagged Z Z  

a number' followed by "st", "nd", "rd" or "th" , tagged 00 
a number followed by " S "  tagged CDS 

a number containing ' - " ,  tagged CD-CD 

a number followed by "apostrophe ss', tagged CD$ 

a number followed (possibly) by a letter, tagged CD 

a word containing a superscript or subscript, tagged sFO 

a word containing letters and digits, but no hyphen, tagged SF0 

*In this context, a "number" means a sequence of digits (0-9) 
perhaps also including ". ", " , '  and "/". 

3 The "standard" prefixes include "a-". "CO-", "counter-", "de-" 
"hyper-", 'tmis-mo ,rout-tm , W over-". "re-", "retro-", "super-", and 
"trans-". 

4 Words ending "chcs", "shes", "sses",  "rzes", "oes", "xes" have 
the "es" removed: words with 5 or more letters and ending in "ies" 
have the "ies' changed to "y"; words ending in "full-stop s "  have 
both characters removed; other words ending in "S" (unless they 
end in " s s " )  have it removed. 

5 Tags that take -e are VB (becoming VBZI and CD, NN, NNP, NNU, NP, 
NPL, NPT, NR (becoming COS, NNS, NNPS, NNUS, NPS. NPLS, NPTS, NRS) 



RppnUorX C: Tagging dec%lons of AWLYHWK3 
I (Note: "Partrard" the charact- after the last hyphPn) 

APPLYWIC 
No 

(see .Am. D) Retain 

to Partwvd 
that* 

- 9  
- 

VBZI 

Default: 

Default: 

NN Ve &is 



1 "WIC" means "Ward-initial Capital" 

2 Sec Note 4, Appendix B. 

3 The "Hyphen-List" consists of "class', "hand", "like", "price", 
"proof", "quality", "range", "rate", and scale". 

4 See Note 5 ,  Appendix B. 

5 For words not ending in " S " ,  if IN is one of the tags, tag the 
word NN JJe; if VBN is one of the tags, tag the word JJ; if VBG 
is one of the tags, tag the word JJ NN VBGI; if NNU is one of the 
tags, tag the word JJB; if NN with "normal" probability 15 one of 
the tags, tag the word NN JJB; otherwise leave the tags unchanged. 

G For words ending in " S " ,  if IN is one of the tags, tag the word 
NNS; if VBG is one of the tags, tag the word NNS; if NNU is one 
of the tags, the tag is JJB; if NW with "normal probability" is 
one of the tags, the tag is NNS; otherw~se retain tags that take 
" 6 "  (see Note 5. Appendix B). If there are none, then tag the word 
NNS VBZ. 



epmmnt D: ragging decisiow of APPLYWIC 

("WC" -S "word-initial Capital") 

Tags frcm 
Yes WIC Suffix 

List 

Default: NP 
(if m, then 

M 

Default: NPS 
if abbrevht ion,  
else NP 

Notes 

1 *he NIC suffix ~ i ~ t  contains the following endings: "ic', 
, , e 5 e q m  , < r i t e t s  , "esque" . ?-ish", uisml*, "can", "ian" , "woman", 
"women", "ation", "ist" . 

2 See Note 4, Appendix B. 

3 see ~ o t e  5, Appendix B. 



APPENDIX E: SPECIMEN OF VERTICAL OUTPUT (before post-editing) 

thus 

it 

is 

clear 

that 

the 

predominant 

organization 

particularly 

in 

the 

distribution 

of 

manufactured 

goods 

is 

the 

wholesale 

merchant 

who 

carries 

stocks 

RB 

IN 

AT1 

NN 

IN 

JJ 

NNS 

BEZ 

AT1 

JJ 

NN 

WP 

VBZ 

NNS 

APPENDIX F: THE SAME PASSAGE AS RKHORIZONTALIZED OUTPUT 

^ thus it is clear that the predominant organization, particularly 

" RB PP3 BEZ JJ CS AT1 JJ NN , RB 

in the distribution of manufactured goods, is the wholesale merchant 

IN AT1 NN IN JJ NNS . BEZ AT1 JJ NN 

who carries stocks. 

iW VBZ NNS . 



CONSTITUENT-LIKELIHOOD GRAMMAR 

Eric Steuen AtweZZ 

Univerezty of Lancaster, England 

A INTRODUCTION 

The paper by Leech et 0 2 .  describes the aims of  the LOB Corpus Gramma- 

tical Tagging project, and explains the suite of programs we are 

us~ng to achieve these aims. In this paper, I would like to look in 

greater detail at the theoretical basis of these programs; I shall 

attempt to explain exactly what constituent-ZikeZiilood grammar in- 
volves, and suggest some other applications of this probabilistic 

approach to natural language syntax analysis. 

A.l General principles of CL grammar 

The CL qrammar used in the LOB Corpus project is specifically designed 

to be used in tagging, that is, in assigning a grammatical-class 

marker to each word in a text. In fact, the basic principles could 

be generalized to apply to other levels of linguistic analysis 

(parsing, semantic analysis, etc.); in general, if the analysis in- 

volves assigning 'labels' to 'constituents', then a CL qrammar could 

be devised for this analysis. 

The CL method of grammatical analysis involves two steps: 

li) Each 'constituent' is first assigned a set of potential 'labels'. 

This can be done by some quite simple mechanism such as dictio- 

nary-lookup; this may well mean that some of the possible labels 

are in fact inappropriate in the given context, but this does 

not matter, since they will be eliminated during the second 

stage. 

(ii) Each of the potential labels of a constituent is then assigned 

a ~ , u Z n t i o s  ZikeZiiroad figure, using a formula which takes into 

accrilnt contextual and other relevant factors; having done this, 

w e  uen then choose the single 'best' label for the constituent, 

and disregard all the others (no matter how many others there 

happen to be). 



Thus a CL grammar should not be viewed as a set of rules for genera- 

ting sentences; rather, it is characterized by: 

lil an algorithm for assigning a set of possible 'labels' or tags 

to any given constituent; and 

Cii) a general r e Z n t i v e  ZikeZihood formula  which can be used to calcu- 

late the relative likelihood of any given label or tag in any 

given context. 

A . 2  The LOB CL grammar 

In the CL grammar used to analyse the LOB Corpus, the 'labels' are 

grammatical tags, and the 'constituents' are words (in this special 

case ,  all the 'constituents' are at the same 'level'; but this does 

not mean that CL grammar could not be generalized to deal with more 

complex Structuring). 

The tag-assignment algorithm is embodied in the program WORDTAG. Tags 

are assigned mainly by dictionary-lookup; but since the set of 

possible words in the English language is open-ended, the algorithm 

also includes a number of 'default' routines to deal with words which 

'fall through the net' (as explained in Leech et O Z . ) .  This means 

that the tag-assignment algorithm can he used to assign a set of 

potential tags to an3 word, and this set will almost always include 

the 'intuitively correct' tag. 

Probably the most innovative part of the LOB CL grammar is the gene- 

ral reZotiue l i k e l i h o o d  formula  used by the 'tag-disambiguation' 

program CHAINPROBS. When a word has been assigned more than one 

potential tag, this formula is used to find the relative likelihood 

of each candidate. We have found that a very simple formula, taking 

into account only the immediate context, will correctly choose the 

'best' tag in c. 96-97% of all cases lmo~eovcr, this high success 

rate is consistent regardles~ of style: novels, newspapers, magazines, 

etc. all have approximately the same success rate). Section B explains 

the Tag Relative Likelihood formula in greater detail. 

A.3 Other applications of CL grammar 

The CL-grammar approach to language analysis was developed speclfl- 

cally for the LOB Corpus Grammatical Tagging research project. How- 

ever, it ha5 become clear that this methad of analysis has many other 

possible areas of application. The two main advantages of CL grammar 



over other methods of natural language analysis are: 

111 C e n e r a L i t y  and robuatneee: 'Rule-based' analysis algorithms 

tend to work only with sentences that 'follow the rules', and 

wlll fail if presented with 'non-standard' English, accidental 

misspellings, or other 'deviant' input. Unfortunately, as become 

clear when researching with a large corpus, 'real-life' English 

texts are often dotted with many of these 'imperfections'! In 

Contrast, the LOB Corpus Tagging programs are extremely general 

and 'robust', since they will produce a reasonably acceptable 

analysis of an# input (they have successfully dealt with news- 

paper 'telegraphese', 'foreigner English', Sci-Pi neologisms, 

and even a 'humorous' text peppered with d e z i b e r o t e  mis- 

spellings!). 

liil Simplicity: Most syntax-analysis programs build a complex 'parse 

tree' for each sentence, which requires much complicated and 

time-consuming computation. CL grammar, on the other hand, in- 

volves analysis at a 'local level' only; the tag-likelihood 

function looks at the immediate context only, not at a whole 

sentence; and even within this localized context, the computa- 

tion is very straightforward. This means that the amount of 

computation is much less; the analysis is much simpler and 

faster. 

These advantages make CL grammar particularly suitable for applica- 

tions requiring a simple and fast analysis of a wide range of possible 

linguistic input. In sections C, 0, and E I shall look briefly at 

three potential uses of CL grammar; a spelling and grammar 'checker' 

for use in Word Processors, a speech analysis program for converting 

from spoken to written English, and a general Grammatical Parser for 

the LOB Corpus. 

B THE LOB TAG RELATIVE LIKELIHOOD FUNCTION: 

110P1 WE DEVELOPED THE FOPSlULA 

To glve the reader a clearer idea of how 'likelihoods' are calculated 

~n a CL grammar, I will attempt in this section to explain the Tag 

Relatrve Llkellhood Functlon used in tagging the LOB Corpus; I will 

do this by explaining stcp hy step how we developed the mathematical 

formula. 



B.l A formalism for words and tags 

The programs before CHAINPROBS (where the likelihood formula is 

applied) divide the texts of the LOB Corpus into records, where each 

record contains a single word and a set of potential tags, and each 

record has a unique reference number (in fact, each record is a 

separate line of text; but I prefer the tern 'record' (rather than 

'line'), since this avoids confusion (different words which were on 

the same line in the original Corpus are in different recordsll. If 

we denote the record-number by r, the word by W<=>, and the set of 

tags hy T<r,l>, T<r,2>, T<r,3>, ... T<r,nlrl>, where nlrl is the 
number of potential tags in the record r, then a typical sequence 

of records from the LOB Corpus is: 

record-no. word tags 

r-l W<r-l> Te-l,l>, T<r-1,2>, . . . T<r-1,nIr-ll> 
r W<r> T<r,l>, T<r,2>, ... T<r,nlr)> 
r+l W<r+l> T<r+1,1>, Te+1.2>, ... T<r+l,n(r+l)> 

B.2 Relative and absolute likelihood 

CHAINPROBS assigns a percentage likelihood figure to each tag in a 

record. This percentage is the relative likelihood of the tag, rela- 

tive to all the other potential tags in the record. The relative 

likelihood 1 of a tag T e , a >  is the abaoZute  likelihood L of that tag, 

divided by the sum of the absolute likelihoods of all the potential 

tags in the record r: 

I IT<r,a>) = L(T<r,a>)  



8.3 'Factorizing' likelihood: L = Lb * Lf r LW 

The absolute likelihood function must now be defined. Ideally, we 

would like this function to take into account nZZ relevant contextual 

information; this would be the 'perfect' absolute tag-likelihood 

function. Unfortunately, it is not immediately apparent exactly whit 

such a fonnuli! should look like. However, we can work towards this 

'perfect' formula, step by step: first we must write some simple 

formula which approximates to the 'ideal'; then, we can add on extra 

Eactors to take into account more peripheral information. 

TO begin with, we can say that the absolute likelihood of a tag is 

dependent on the ' b a c k w a r d  contest' (i.e. the preceding tags) and the 

' f o r w a r d  context' (i.e. the following tagsl; this allows us to sepa- 

rate out ' b a c k w a ~ d  Z i h e Z i h o o d '  Lb and ' f o r w a r d  Z i k e Z i h o o d '  Lf. Anothe: 

important factor in deciding the likelihood of a tag is of course 

the word it is to be assigned to: for example, with the word "water", 

the tag NN (noun1 is likelier than the tag V 2  (verb). Thus the 

absolute ?iRelihcod formula must also take into account LW, the 

' A ' .  J Y Z - L O ~  L i k e Z i l t o o L ' .  

The simplest formula for absolute likelihood which takes these three 

factors into account is: 

(where represents multiplication). This is our first approximation 

to a 'perfect? likelihood function. 

B.4 Tag-palr bond B 

TO calculate the likelihood of a tag T a , a > ,  let us assume to begin 

with that the records immediately before and after r each have only 

one unambiguous tag. Furthermore, let us assume that the only thing 

relevant in the 'backwards context' is the single tag in the pre- 

vious record, Ttr-l,l>; and likewrse that the only relevant factor 

in the 'forward llkellhood' is the tag T<r+l,l>. 

Thls means that the 'backward lzkellhood' can be defined as smply 

the ' b o ~ i t i '  between Te,a> and the preced~ng tag Te-l,l>; and l~ke- 

wlse, that LE 1 s  smply the ' b o n d '  between T<r,a> and Ta+l.l>: 



Values of the tog-pair bond function B are stored in a table with a 

TOW and column for every tag in the LOB tagset. 

The 'bond' between a pair of tags Tl, T2 is dependent on the freguen- 

cy of cooccurrence, f(Tl,T2), compared ta the frequency of occurrence 

of each tag individually, f(T1) and f(T2). These statistics must be 

extracted from texts which have already been tagged unambiguously 

(in the LOB Corpus Grammatical Tagging project, we extracted these 

figures from the Brown Corpus initially (making adjustments where the 

tassets differ). but later statistics include figuree drawn from the 

first sections of the LOB Corpus to be analysed). 

B.5 Calculating values of B for each tag-pair IT1,TZ) 

If tags were combined randomly 1i.e. if context had no influence on 

the choice af tag with a word), then the I'random') probability of 

tag T1 being followed by tag T2 would be 

lN1.i~ a constant, dependent on the number of tags in the sample.) 

The actual ('true') probability of the tag-pair ITl,T2) is 

IN2 is another constant.) 

If we divide P<truc> by Pcrandom,, we get a very simple measure of 

the 'correlat~on' or bond between T1 and T2; ignoring the constant 

factor (N1/N2) we get the formula: 

The value of BlT1,TZ) for any tag-pair (T1,TZ) is thus dependent on 

the sample from which the frequency statistics are derived, so clear- 

ly it is important that the sample is representative, and reasonably 

large. However, even with a very large sample, we cannot be certaln 



that the figures are perfect, especially if a particular frequency 

figure happens to be very low or zero; for example, if for a given 
sample f(DT,DODl=O, does this mean that the tag-pair (DT,DOD) can 

n e v e r  cooccur in English, or is this simply a failing of this parti- 

cular sample? It is safer to assume the latter; so we must add a 

constant kl to nZZ tag-pair frequency figures, to ensure that all 

values are greater than zero. Similarly, we should add a constant k2 
to all single-tag frequency figures, to ensure that we can never 

divide by zero. Thus, the new definition of B is 

B.6 Word-tag likelihood LW 

'Word-tag likelihood' is the likelihood that a given word will have 

a given tag, regardless of other factors. Dictionary-lookup (or 

equivalent mechanisms1 can give us a very crude measure of LW: if 

the tag occurs with the word in the dictionary, then Lw is 1, other- 

wise 0 (e.g. L~('~the".ATIl=l, but Lw~'~the'~,VBl=Ol. 

In the LDB Corpus CL grammar, we found that this 'binary' likelihood 

funct~on was too crude and simplistic, so we included four 'levels' 

of word-tag likelihood. The 'binary' values of Lw, 0 and 'l, are im- 

p l i c i t l ~  assigned by straightforward dictionary-lookup, as explained 

above; in addition, the Wordlist used in the LOB Corpus CL grammar 

has two e s p l i ~ i t  LW 'weighting markers' l @  and 91: if a tag appears 
with a word only rarely, then that tag is marked C, and if the tag 

is veru rare with a given word, it is marked %,  for examp1.e: 

alert JJ VB NNP 

watsr NN VB% 

major JJ NNB VB% 

(Not~onally @ means that the tag appears with the given word in 10% 

or less of all uses, and % means 1% or less. In fact often the 

assignment of weightings was based on 'intelligent guesses', particu- 

larly wlth rare words; this is one reason why we decided to limit 

ourselves to only four 'grades' of word-tag likelihood (this decision 

has since been vindicated by the consistently high success rate of 

the tagging programs: it is clear that a much more 'refined' system 

of gradations of LW is unlikely to improve tagging results very 



These weighting-markers appear in the LOB WORDLIST, SUFFIXLIST, and 

IDIOMLIST, and are assigned by WORDTAG (end IDIOMTAG). In fact, 

within the theoretical framework of a CL grammar, the assignment of 

these weightings is not a necessary part of the tag-assignment 

algorithm; more correctly, it 'belongs' with the mechanism for calcu- 

lating tag likelihoods. In other words, if the two tasks of 

lil assigning potential tags to each word, and 

(ii) calculating likelihoads for each potential tag 

were autonomously dealt with by WORDTAG and CHAINPROBS respectively, 

then the @and B 'weighting-markers' would not be assigned by WORDTAG; 

instead, every time CHAINPROBS applied the tag-likelihood function 

to a tag, it would have to find the appropriate value of LW for that 

word-tag combination. Of course, this would require exactly the same 

word-tag lookup algorithm as was used by WOROTAG to assign the poten- 

tial tag in the first place; so, to save time, WORDTAG assigns potcn- 

tial tags a n d  LW weighting-markers (where appropriate) in a single 

search. 

B.7 Generalizing the formula to deal with ambiguous contexts 

Thy formulae for Lb and Lf given in 8.4 assume that the records 

immediately before and after the current record are unambiguously 

tagged, so that in working out the likelihood of tag T<r,a> the only 
tags we need take into account are T<r-1.1) and T<r+l,l>. However, 

if either of these records are in fact o m b i g u o u o ,  we must take the 

other tags into account also. For example, if the immediately pre- 

ceding record is ambiguously tagged, then the formula for b o c k w a r d  

Z i k e Z i i t o o d  Lb must take into account not only T<r-l,l>, but also all 

the other potential tags in record r-l: T - 2  T - 1 3  ... 
TO-l,n(r-l)>. 

For each potential preceding tag T<r-l,i>, we must take into account 

the b o n d  between T<r-l,i> and T<r,a>, 'weighted' by the Backward 

Likelihood in turn of T<r-l,i>, and also the Word-Tag Likelihood LW 

of T<r-l,i>. Thus, b a c k w a r d  l i k e l i h o o d  must be redefined as a re- 

cursive function: 



F O F W ~ P ~  ZikeZihaad must also be redefined, so it can deal with sequen 

ces of tag-ambiguities: 

Notice that the recursive definition of Lb means that the bnokward 

Z ikat ihood  of a tag T<r,a> theoretically takes into account oZZ tags 

preceding T<r,a>; however, in calculating ~ e t o t i v e  likelihood, the 

set of possible 'backward contexts' before the last unambiguoun tag 

is the same for all the potential tags in record r, so this can be 

"cancelled out". Similarly, forword ZikeZihood recursively defined 

should theoretically involve oZZ tags after Ta,a>; but in calcula- 

ting reSat - ive  likelihood all bonds after the next unambiguous tag 

"cancei out" and can thus be ignored. 

In other words, when calculating the relative likelihood of any tag 

using the general formulae for Lb and Lf, we need only 'look back' 

as far as the t o o t  unambiguouo t a g ,  and we need only 'look forward' 

as far as the n a z t  unornbiguoua t a g .  In general, tags are 'disambigu- 

ated' by looking onZy at the words in the irnrnediote c o n t e r t .  

B.8 The relative likelihood function 

As an example, let us take a sequence of five records, with five con- 

secutive words: A, B, C. D, E; and with tags: a, h, b', c, c', d. d', 

e (the ilrst and last records are unambiguously tagged, while the 

lnterrnedlate records have two tags each): 



r e c o r d  no. word t a g s  

To show how t h e  formulae  a re  a p p l i e d ,  l e t  u s  c a l c u l a t e  l l d ) ,  t h e  

r e l a t i v e  l i k e l i h o o d  of t h e  t a g  d.  The formula from 8 . 2  t e l l s  u s  

L l d )  and L ( d ' )  can  be expanded u s i n g  t h e  formula from 8.3: 

Applying t h e  r a c u r s i v e  formulae  f o r  Lb and Lf from B.7 ,  t h e s e  equa- 

t i o n s  expand t o :  



we can thlnk of a term such as 

as a chain, represented by [abcdel. This notational simplification 

allows us to rewrite the equation for the relative likelihood thus: 

lldl = L(d1 

Lldl + L(d'1 

= [abcde] + [ab'cdel + [abc'del + [ab'c'del 

[abcde] + [ab'cdel + [abc'del + [ab'c'dcl 
+ [abcd'el c [ab'cd'el + [abc'd'e] + lab'c'd'el 

= (SUM OF ALL POSSIBLE 'CHAINS' FROM a TO e THROUGH d) 

(SUM OF ALL POSSIBLE 'CHAINS' FROM a TO el 

This can be generalized to give us the relative likelihood of any 

tag T in terms of 'choina': 

1lTl = (sum of all possible 'chains' from the last unambiguous tag 

to the next unambiguous tag THROUGH TAG Tl 

(sum of all possible 'chains' from the last 

unambiguous tag to the next unambiguous tag) 

CHAINPROBS actually uses a definition of the likelihood function in 

terms of 'chains', since it is computationally more efficient; but 

this new definition is entirely equivalent to the likelihood formulae 

previously given. 

B.9 Modifying the 'one-step' formula in special cases 

SO far, we have assumed that the tag-likelihood function is a 

Flrst-Order Markov process: we have assumed that a 'chain' is com- 

posed of a sequence of independent 'links', bonds between poira of 

tags. In trials on a sect~on of the LOB Corpus lover 20,000 words), 

we found that the formulae above correctly yielded the 'best' tag 

for C 93-948  of words; 50 the 'one-step' function is in fact a very 

close approximation to the 'perfect' likelihood function (we were 

actually qurte surprised that such a simple set of formulae coulcl be 



However, among the errors in the remaining 6-7%, there were a 

significant number of cases where the function clearly needed to 

look two tags backwards or forwards (rather than just one) to calcu- 
late the likelihood of a 'link' in a 'chain'. These exceptional cases 

fell into two main categories: 

(il tag-sequences involving a "noise-tag" such as RB (adverb), e.g. 

in 

"she began to seductively reveal herself" 

PP3A VBD TO RB VB PPL 

the forward likelihood of TO is much more dependent on VB than on RB, 

and the backward llkelxhood of VB is more dependent on TO than RB. 

In effect, when calculating the likelihood of the tag-sequence, we 

would like to 'ignore' the "noise-tag" RB. 

(ii) tag triples around CC (coordinating conjunction), of the form 

T<a> CC T<h> : Tag-triples in which T<a5 and T<b> are in fact the 

same tag (e.g. NN CC NN, JJ CC JJI are far likelier than tag-triples 

in which T<a> and T<b> differ (e.g. JJ CC NN). 

The 'one-step' likelihood function can be used to calculate a 

likelihood figure for any sequence of three tags T1, T2, T3. 

essentially by multiplying B(Tl.T2) r B(TZ,T31. In a few special 

cases, this tag-triple likelihood must be modlfied by a t a g - t r i p L e  

~ c o l i n g  f o c t o r ,  S(Tl,TZ,T3). These special cases are ones where the 

overall likelihood of the tag-triple depends on the 'bonding' of 

T1 and T3, rather than B(T1,TZ) and B(T2,T3). 

8.10 Summary of the final formula 

HOW is S(Tl,TZ,T3) to be incorporated into the likelihood formulae? 

If the immediate context were assumed to be unambiguous, we could 

simply add a new factor to the formula for absolute likelihood 

(L('r<r,a>) : 

To be able to deal with ambiguous contexts, we must generalize this 

formula to: 



The formulae for Lb and Lf must be similarly modified to take S 

lnto account. The above formula for L is considerably more complex 

than that of 8.3. However, since S(Tl,TZ.T3) only 'comes into play' 

In a few special cases, the extra computation is often redundant. 

There is an alternative (equivalent) formula which is computationally 

much more efficient (even though the formula looks more complicated 

at first sight); it contains a separate factor dealinq with S, which 

'cancels out' to 1 land can thus be ignored) in most cases. This 

formula is given below, in the following summary of the LOB CL 

Grammar tag likelihood formulae: 

R e l a t i v e  Z i k e l i h o o d :  



A b o o l u t e  L i k e l i h o o d :  

L tT<r ,a> l  = L b l T < r , a > l  t L f  IT<r .a: l  i LwtW:r>,T<r,a)l  t 

Backward Z i k e Z i h o o d :  



Forward likelihood: 

Lf IT<r,a>) = 

j-l. . " W + l )  

The a l t e r n a t r v e  d e f i n i t i o n  of r e l a t i v e  l ike l ihood i n  terms of 

' c h a i n s '  i s  now: 

11T) = sum of a l l  poss ib le  'CHAINS' 

FROM t h e  LAST unambiguous t ag  

not i n  t h e  middle of a ' spec ia l  case '  t a g - t r i p l e  

TO t h e  NEXT unambiguous t ag  

not  i n  t h e  middle of a ' s p e c i a l  case' t a g - t r i p l e  

THROUGH TAG T 

sum of a l l  poss ib le  'CHAINS' 

FROM t h e  LAST unambiguous t a g  

not  i n  t h e  middle of a ' s p e c i a l  case '  t a g - t r i p l e  

TO t h e  NEXT unambiguous t ag  

not i n  t h e  middle of a ' s p e c i a l  case' t a g - t r i p l e  

8 .11 P ~ t e n t l a l  f o r  f u r t h e r  Improvement 

The cu r ren t  success r a t e  of CllAINPROBS is cons i s t en t ly  96.5-978. 

T h c o r c c ~ c a l l y  this could be rmproved by addrng f u r t h e r  f a c t o r s  t o  

the formulae, takxng mare contextual  l n f o r m a t ~ o n  i n t o  account by 

g o ~ n g  beyond the  simple 'Augmented Flrst-Order Markov' model (CL 

Grammar is l d c a l l y  s u ~ t e d  t o  'enhancement through feedback ' ) .  



However, the law of diminishing returns suggested to us that it 

would probably be easier simply to correct remaining tagging-errors 

'by hand' than to spend time and effort enhancing the formulae 

further (at least, this is quicker in the short term, for the 

immediate task of tagging the LOB Corpus; for new corpora, improve- 

ments may well be worthwhile). 

The types of construct in which the remaining errors tend to occur 

are listed in the Manual Postedit Handbook (Atwell e t  a t . ) .  In 

general, many of these problem-cases call for 'higher-level' gramma- 

tical or semantic analysis, which would require major enhancements 

of the present tagging programs. Nevertheless, we feel that our 

remarkable success rate using such a simple model of language is 

highly significant. 

C ADAPTING THE LOB CL GRAMMAR TO DETECT SPELLING AND GRAMMATICAL 
ERRORS 

As explained in section A, the LOB Grammatical Tagging Program5 

perform a Very simple grammatical analysis of input texts. This 

'surface' approach makes the programs much faster than 'full-blooded' 

parsers; so they are ideally suited to applications where a 'basic' 

level of grammatical analysis is all that is required. 

One such application is in the automatic detection of spelling and 

grammatical errors in input English texts. In this section, I shall 

explain how the current LOB Grammatical Tagging programs have been 

superficially modified to detect such errors in a short sample text; 

and I shall discuss what further research is required to produce an 

efficient general-purpose a u t o m a t i c  e r r o r - d e t e c t i o n  program for 

commercial Word Processing applications. 

C.l Current 'spelling-checkers' do not look at context 

A number of programs are currently available which claim to 'check 

spelling' in English texts. However, these programs are limited to 

simple dictionary-lookup: each input word is checked against a large 

Lexicon, and any word not found is assumed to be misspelt. Unfortuna- 

tely, this simple method allows many errors to 'slip through' un- 

detected: if a misspelling happens to coincz.de with another valid 

word (as in "I now how to prophecy the whether!"), then it is 

accepted. 



Errors such a5 'nowa', "prophecy", and "whether' in the example coutd  

be detected by simple grammatical analysis: for example, the sub- 

ordinating conjunction "whether" is easily confused with the noun 

"weather"; and a noun is much likelier than a subordinating conjunc- 
tlon in the context 

' l . . .  the X!" 

so "whether" is probably a misspelling of "weather" in this context. 

C . 2  Adapting the LOB Grammatical Tagging Programs 

Notice that this sort of error can be detected simply by comparing 

relative likelihoods of word-tags; no higher level of grammatical 

cnalysis is required. Clearly the LOB CL Grammar is ideally suited 

to this kind of analysis. Only a few superficial modifications were 

needed to convert the current Grammatical Tagging Programs into a 

prototype 'context-sensitive' spelling-checker (these mainly related 

to input/output formats). 

More important than the adjustments to the programs was the change 

in the role of the wordlist. In Grammatical Tagging, wordlist- 

lookup is just one of several methods of tag-assignment available 

to WORDTAG: there were a number of 'default' routines for words not 

found in the wordlist. In a spelling-checker, these 'default' 

routines are not required, in fact, they must not be used at all: 

if a word is not found in the wordlist, then we can assume it is a 

misspelling immediately, without the need for 'context-compatibil~ty' 

checking. Therefore, the Lexicon of a spelling-checker must be much 

larger than the current LOB wordl~st. 

Another difference is that each entry in the Lexicon must not only 

contaln a word's 'own' tags, but also the tags of any similar words, 

the error-togn. For example, in the sentence given above ("I now 

how to prophecy the whether!"), the misspelt word "prophecy" can be 

detected by grammatical analysis onZy if we know that it is a noun, 

and that there exists a very similar verb ("prophesy"); so the 

Lexicon entry for "prophecy' must give not only the word's 'own' 

tag NN, but also the error-tag VB: 

I+ORD TAGIS) ERROR-TAG IS l 

prophecy MN VBE 

Note that errar-tags are marked with E to distinguish them from 'own' 

tags. 



C.3 Trial run of the adapted LOB tagging programs 

TO put the theory to the test, a short text was devised, full of 

deliberate spelling mistakes which could ant(/ be detected by gramma- 

tical analysis. Also, a sample Lexicon was compiled, with an entry 

for each word in the text. This text was then processed by the 

adapted LOB tagging programs: 

(i) VERTICALIZE put each word on a separate line (record), and 

also tagged punctuation marks (so these do not have to be in- 

cluded in the Lexicon) 

(ii) WORDTAG assigned a set of tags and error-tags to each word, 

by Lexicon-lookup (any word not found in the Lexicon can be 

marked as an error at this stage) 

(ili) CHAINPROBS used the Tag Likelihood function to choose the 

'best' tag for each word; if an error-tag (marked £ )  was 

chosen, then this indicated a probable misspelling 

(iv) LOBFORMAT (renamed MARKERRORS) 'rehorizontalized' the text, 

writing the message "ERROR?" underneath all words which had 

been 'error-tagged'. 

The output from this trial run is shown in Appendix A. Almost all 

the errors in the text are flagged; but none would be uncovered by 

current 'spelling-check' programs. 

C.4 From prototype to general-purpose program 

Much research still has to be carried out to transform a 'prototype' 

into a general-purpose spelling-checker for commercial Word Processing 

packages : 

li) Compile a very large wordlist, much bigger than the current 

LOB wordlist. 

(ii) Modify the LOB Tagset (and Tag-Pair Bond function tahle): the 

number of tags in the current LOB Tagset is 134, but experience 

has shown that many tags could be 'merged' or eliminated with 

little loss of accuracy (many of the finer distrnctions drawn 

in the LOB Tagset are linguistically interesting, but not 

required for spelling-checking); this makes the program much 

smaller and more effrcient. 

(iii) A set of potential tags must be added to every word in the 

Lexicon: this can he done by running WORDTAG over the untagged 

Lexzcon, and then 'manually' checking the decisions reached. 



(iv) We must design an algorithm to discover, for each word in the 

Lexicon, a set of 'similar' words. This algorithm must find 

words whlch have very slmilar spellings to the 'target' word 

(e.g. now is a common 'typo' misspelling of k n o w ) ;  and also, it 

must find words which can easily be confused hecause they sound 

the same (e.g. there vs. their). 

Using this 'similar-word-finding' algorithm, every word in the 

Lexlcon must be assigned a set of error-tags: first, a set of 

similar words is associated with each 'targct' word; then, the 

tags from these similar words become the error-tags of the 

'target' word. 

(vi) The current LOB Tagging programs were originally written to be 

run on University Mainframe computers, and we paid scant 

attention to questions of speed and efficiency; the programs 

contain a number of routines which, in the light of experience, 

are clearly not necessary in a spelling-checker (for example, 

the programs are designed to collect large amounts of statisti- 

cal feedhack; but once a satisfactory success level is achieved, 

t h ~ s  Will not be needed). Everything but the essential 'core' 

of the analysis can be cut out, and the suite of programs can 

be combined into one single program, performing the analysis 

in a single pass. In effect, then, the LOB CL Analysis suite 

must he completely rewritten, to make it much faster and more 

efficient. 

C.5 Checking grammar and style 

So far, we have only discussed opelZing errors which can be detected 

by grammatical analysis. In essence, such errors are detected because 

the misspelling causes an incongruity in the grammatical structure 

of the sentence; the position of the incongruity is marked by the 

warning message "ERROR?", which is to be interpreted as a spelling- 

error. 

In general, though, any striking grammatzeal incongruity is liahle 

to be marked by the warnrng message "ERROR?"; and although up till 

now we h2vc assumed this indicates a spelling-error, this is not 

necessarily so: the user of the system must be aware that this warn- 

ing may be triggered by e grommotical infelicity (for example, if a 

word is not just misspelt, but accidentally missed out altogether, 



then if an 'ungrammatical' sentence results, an "ERROR?" warning will 

be triggered. 

Rather more insidious and problematic than blatantly 'incorrect' 

grammar is the use of obscure and unnecessarily complex grammar, 

which can make documents unintelligible; thls is a problem of ntyle 

rather than simple qrammatlcality. Fortunately, the spelling-check 

program is readily adapted to check 'grammatical style' as well. 

Currently, the tagging programs choose the 'best' analysis by compa- 

ring the peZotiue Likelihoodn of alternative analyses. A fairly 

simple modification would allow us to eliclt an obnoZute ZikeZihood 

figure for the 'best' analysis of each sentence (normalized to fall 

wlthin the range 0 to 1). This figure amounts to a measure of 

' g ~ o m m n t i c a Z  deviance': sentences with a normalized absolute likeli- 
hood of nearly 1 have simple, 'ordinary' grammatical structure, 

while sentences with a normalized absolute likelihood near zero are 

highly 'deviant'. 

Thus,the 'Automatic Text-Checker' will not only mark out blatant 

errors in spelling and grammar, but it will also grade sentences 

along a sliding scale according to 'grammatical devrance' (sentences 

which fall below an 'acceptability threshold' (chosen by the user1 

can even be specifically marked out). word Processors equipped with 

this Automatic Tcxt-Checker will hopefully encourage the use of 

Plain English in official and business documents! 

D CL GRAMMAR IN SPEECH SYNTHESIS AND ANALYSIS 

Converting between written and spoken English is a trivial operation 

for humans, but has proven extremely difficult for computers. CL 

Analysis may prove a useful tool in tackling this problem. 

D.l Grophemlc to phonemlc transcription 

It is generally agreed that an important stage in speech synthesis 

is the translation of ordrnary written text into some phonetic form, 

in which each symbol corresponds to some specific sound. Some simple 

speech-synthesis systems have a straightforward dictianary-lookup 

algorithm to do this, using a dictionary which gives a single phone- 

tic equivalent of each written word. A more refined version of this 

algorithm also has a 'default' rule-system to translate wards not 

found in the dictionary, so that any input word can be assigned a 



phonetic transcription; this is analogous to the default routines in 

WORDTAG, which ensure that any input word is assigned a set of 

potential tags. 

tinfortunately, some words turn out to be 'ambiguous', in that they 

can have varying pronunciation and/or stress, depending on their 

grammatical function, e.g. : 

"John wanted to =cad the paper" 

VS. 

"Has he r e a d  it yet?', 

"She seems to r e j e c t  all my advances" 

vs. 

''I put the  eject in the dustbm" 

A grammatical tagging algorithm could be used to disambiguate such 

examples. The great advantage of CL Analysis is that we do not have 

to analyse a whole sentence, but only the immediate context; a 

'Grapheme-to-Phoneme Transcription' program could 'turn on' the CL 

tagging and disambiguation algorithm whenever such an ambiguity 

arose, but keep it 'turned off' the rest of the time. 

However, if we wish to include sentence intonation in our phonetic 

transcription, then grammatical analysis of the whole sentence 

clearly ia required. For this, the CL Grammatical Parser to be 

described in Section E would be a useful tool. 

D.2 Speech analysis in terms of constituent-likelihood analysis 

CL Analysis plays an even more important part if we view the whole 

process of speech analysis, from sound to written form, in terms 

of 'tagging', that is, assignment of 'labels' to 'constituents'. 

The first step in speech analysis is to convert 'raw' sound into a 

digltal form which can be readily manipulated by digital computer 

(the Lancaster University Linguistics Department has an ACT Sirius 1 

computer whlch has this facility). Next, this 'digital sound' must 

be converted Into a sequence of phonetic symbols; and then, the 

sequence of phonetic symbols must be converted into normal written 

English. Yowcver, these two conversion processes are far from trivi- 

al. The 'units' of speech sound (phones1 are of variable length 

(e.g. a vowel sound is longer than a plosive), and also, the 'same' 



utterance recorded several times will yield a slightly different 

digital recording each time. This leads to uncertainty and ambiguity 

in the phonetic transcription of a digital recording af an utterance. 

Moreover, even if we could be sure of choosing the correct phonetic 

transcription, converting this to normal written English is still a 

big problem. Again, the 'units' are of variable length (unlike 

written English, spoken utterances generally have nothing like a 

space at every word-boundary). Also, there is another level of 

ambiguity, e.g. make up and ma!, clip may both be valid interpretations 

of a given phonetic transcription. 

T h l ~  second level of ambiguity can only be resolved by grammatical 

analysis: the 'best' interpretation must be chosen on the basis of 

contextual compatibility. Clearly, this problem can be tackled in 

terms of CL Analysis: 

(i) given a phonetic transcription of an utterance, assign a set 

of potential written English interpretations; then 

(ii) assign a likelihood to each potential 'labelling' or grapheme- 

string, Using a Likelihood Function (L<g>) which measures the 

internal grammatical consistency of the grapheme-string in terms 

of the contextual compatibilities of the constituent graphemes 

(so that grapheme-strings which constitute 'grammatical' 

sentences are assigned higher likelihoods than grapheme-strings 

which involve grammatical inconsistencies). 

In fact, the first level of ambiguity, encountered when moving from 

digital recording to phonetic transcription, can also be dealt with 

in terms of CL Analysis: 

(i) given a digital recording of an utterance, assign a set of 

potential phonetic transcriptions; then 

(ii) assign a likelihood to each potential 'labelling' or phone- 

symbol-string using e Likelihood Function (L<p>) which measures 

the intei-nal lexical consistency of the phone-symbol-string in 

terms of the contextual compatibilities of the constituent 

phone-symbols (so that phone-symbol-strings which constitute a 

sequence of valid lexical items (words) are assigned higher 

likellhoods than phone-symbol-strmgs which involve non-existent 

'words' ) . 

A great advantage of this approach is that it allows both levels of 

dis8mbi9uatlon to be combined in an integrated analysis algorithm: 



we can calculate the overall likelihood that a particular grapheme- 

string 1s the correct interpretation of a given drgital recording, 

simply by multiplying L<p> by L<¶>. This is useful for two reasons: 

(i) the 'best' phonetic transcription of a digital recording may 

turn out to be grammatically inconsistent, while a 'less likely' 

phonetic transcription (rejected during the first stage of dis- 

ambiquationl might have had some graphemic interpretation which 

is grammatically 'acceptable'. In other words, if the two 

stages of disambiguation are separate, we may eliminate some 

of OUT options 'too early'; by disambiguating only on the basis 

of 'overall' likelihood, we are effectively hedging our bets 

until oZZ relevant factors have been taken into account. 

(iil The division of the problem of speech analysis into two main 

subtasks, as described above, is in fact contentious; for 

example, many linguists would say that the transition from 

phonetic transcription to phonemic transcription is an important 

separate subtask. However, if the aim of the CL Analysis is to 

assign some 'overall' Likelihood figure to any given mapping 

between digital recording and grapheme-string, then it does not 

really matter how many subtasks this 'overall' process is 

divided into: the 'ovsrall' Likelihood is aimply a product of 

a number of factors, one for each subtask. 

0 . 3  A CL Grammar of spoken English 

The CL Grammar used by the LOB Corpus Tagging program suite is based 

on statistics derived from written English texts (initially, texts 

from the Brown Corpus). In a sense, we can say that the CL Grammar 

was 'extracted' from these texts: although w e  decided upon the tagset 

(using 'intuitive' knowledge of the important grammatical word- 

classes of Englishl, the texts provided the frequency statistics 

which constituted the 'rules' of syntactic patterning. 

The grammar of spoken English is statistically different from the 

grammsr of written English (for example. written English tends to 

include lrorc lengthy, complex sentences); the CL approach allows us 

to quant~ty these differences systematically. First, a Corpus of 

spoken Enqllsh is needed (the London-Lund Corpus of Spoken English 

could be used, or alternatively, if a sufficiently general and robust 

speech-analysis program could be devised, we might even compzle a 



new Corpus using this program (the actual compilation of this new 

Corpus would serve as a very thorough 'test' of such a program!). 

This Corpus must then be grammatically analyzed, by running the 

present LOB Grammatical Tagging programs over it, and then 'manually' 

correcting the errors (many of which will be due to the imposition 

of a Written English Grammar over Spoken English). rrom the analyzed 

Corpus, we can then 'extract' a CL Grammar of Spoken English, by 

gathering the relevant frequency statistics. The differences between 

this CL Grammar of Spoken English and the LOB CL Grammar of Written 

English will be reflected in the differences in Tag-Pair Bond 

function values for certain tag pairs, and also in other related 

statistical differences such as the average Absolute Likelihood 

assigned to a sentence. 

Thus, a speech-analysis program can be used in the compilation of a 

Corpus of Spoken English, from which we can 'extract' a CL Grammar 

of Spoken English; and this grammar will then be very useful to 

researchers in speech analysis and synthesis, since it is specific- 

ally geared to spoken English. Potentially, the two fields of CL 

Grammar and Speech Synthesis and Analysis have much to offer each 

other. 

E CL GRAMMATICAL PARSER 

The current LOB Corpus Grammatical Tagging programs assign a 

grammatical tag to each word in a text, showing its grammatical 

function; but 'higher-level' constituents are not analysed. To do 

this, we need a grommotienl parser;  and it turns out that it should 

be possible to perform a grammatical parse of the LOB Corpus using 

algorithms very similar to those of the present tagging-suite. 

E.1 Tags and hypertags 

In general, each tag in the LOB Tagset can only appear in certain 

syntactic (syntaqmaticl positions, for example: 

AT (article) comes et the start of a Noun Phrase; 

IN (preposition) comes at the start of a Prepositional Phrase; 

CS (subordinating conjunction1 comes at the start of a Subordinate 

Clause; 

. (full stop1 come5 at the end of a Sentence; 



MN (singular common noun) comes 

(il at the start of a Noun Phrase or 

(ri) at the end of a Noun Phrase or 

(iiil within a Noun Phrase or 

(ivl as a Noun Phrase in its own right (i.e. start ond end of a 

Noun Phrase1 

These syntactic positions within higher-level constituents can be 

symbolized by 'higher-level tags' or h ! j p e r t o g e .  By analogy with the 

present WORDLIST (a list of words and their possible tags), we could 

Construct a TAGLIST of tags and their possible hypertags, with 

entries such as 

tag possible hypertags 

AT [N 

S1 

IN [P 

CS [F 

NN NI N [NI [N@ 

PP$ [N 

vs [V1 V] V@ [V@ 

etc. 

(NB [Vldoes not include the object Noun Phrase, but only Verb- 

constituents; however, [NI doee  include subordinate prepositional 

phrases, etc. ) .  

As with tags in the WORDLIST, hypertags are ordered, with @ and % 

markers for rare syntagmatlc functions. 

A program analogous to IVORDTAG could glve each tag in a sentence 

its appropriate hypertags, as given by the TAGLIST (thrs program 

would in fact be much slmpler than WORDTAG, as there are only 134 

tags in the LOB Tagset, Instead of an open-ended set of posslble 

words). 

Sometimes, the hypertaglsl requlred isl/areI indicated better by a 

particular : o m i ~ i , ~ o t i o n  of tags, rather than by the tags taken indivi- 

dually. For example, IN (preposition) is 'hypertagged' [P (open pre- 

pos1tmnal phrase), and wDT (we-determiner) is 'hypertagged' [F[N 

(open subordinate clause and open noun phrase); but the combined 



taq-pair IN WDT must be 'hypertagged' [F[P [N (this is for clauses 

beginning "of which...", "for what...", etc.). These 'special-case' 

taq-pairs and their corresponding hypertag-pairs must be listed in 

a TAG-PAIR-LIST, analogous to the current IDIOMLIST of exceptional 

ward contbinations; a program analogous to IDIOMTAG could 'overwrite' 

hypertags assigned by simple TAGLIST-lookup whenever a tag-pair 

matches an entry in this TAG-PAIR-LIST. 

Since these two 'hypertag-assignment' programs will be considerably 

simpler than IVORDTAG and IDIOMTAG, it will be practicable to combine 

them into a single program: each tag-pair in a text is first looked 

up in the TAG-PAIR-LIST; but if no match is found, then hypertags 

are assigned to the tags individually, according to the TAGLIST. 

This unified hypertag-assignment program will be much more efficient, 

since unnecessary lookups arc avoided, and all hypertags are assiqned 

in a single pass. 

Each record has now been assigned a set of potential hypertags. Next, 

a program analogous to CHAINPROBS must assign a relative likelihood 

figure to each hypertag in a record, using a i i y p e r t a g  ZikeZihoad 

f u n c t i o n  very similar to the Tag Likelihood Function described in 

Section B. We can then choose a single 'best' sequence of hypertags. 

For example, the sentence "As I was eating my lunch I decided to 

get a cup of coffee" would be hypertagged as follows: 

WORO TAG HYPERTAG 

as CS [ F  
I PPlA [NI 
was BED2 [V 
eating VBG V] 
my PPS [N 
lunch NN 
I 

NI 
PPlA [NI 

decided VBD [V] 
to TO LT 
get VB tvl 
a AT N 
CUP NN N 
of IN [P 
coffee NN [NI 

S1 



E.3 Building a syntactic parse tree 

Tags have now been grouped into higher-level constituents IN, V, S, 

etc.); but there are still some 'unmatched brackets'. This is 

because certain tags specifically mark the a t o r t  of a higher-level 

constituent (e.g. CS-[F; IN-[P; AT-[N), but often there is no such 

corresponding 'end-of-phrase word'. 

What we need now is a program which can insert extra closing brackets 

where needed. One way to find out where to add these brackets is to 

try to Convert the labelled bracketing into a tree data-structure, 

following simple 'conversion rules': 

(i) X [ Y means ' Y  is the daughter of X" 

lii) X 1 Y means "X is the daughter of y" 

liii) X 1 [ Y means "Y is the right sister of X" 

(IV) X ... X is represented by a single node X if both Xs are at 

same 'level' of nested bracketing and they are not sisters 

. there is no l [  interposing between the two Xs at t h e  

oame ZeUeZ as the Xs. Note that X .. . Y (where X and Y are 
different, and X is at the same level as Y but not a sister) 

is invalid, since it requires a single node to be tagged both 

X and Y; this is an indication that some phrase-boundary 

(labelled bracketlsl) is missing. 

Using such rules, we can build the following tree: 



E . 4  In se r t ing  missing c los ing  brackets  

The 'conversion r u l e s '  ca r ry  on adding daughters t o  a node u n t i l  t h a t  

node's  c los ing  bracket  i s  found; so ,  i f  t h e  c los ing  bracket  i s  

missing,  t h e  node w i l l  continue t o  have daughters a t tached t o  it 

u n t i l  t h e  sentence-end i s  reached. This means t h a t  t h e  r ightmost 

daughters of a n  'unclosed'  node a re  suopect: each non-leaf node i n  

t h e  t r e e  should have a t  l e a s t  one  daughter ( t h e  f i r s t  o r  le f t -most  

daugh te r ) ,  but  t h e  nodes f u r t h e r  t o  t h e  r i g h t  could wel l  be not 

daughters but right-hand s i s t e r s  (o r  even ' aun t s ' ! )  of t h e  'unclosed'  

node. 

An example of t h i s  is  t h e  unclosed [F  node (marking a subordinate 

c l ause )  i n  the  t r e e  above; i t s  daughters a r e  apparently 

Clear ly  t h i s  is wrong - t h i s  sequence of daughter-const i tuents  could 

not  be a va l id  subordinate  c lause .  The reason f o r  t h i s  e r r o r  i n  t h e  

t r e e  is  t h a t  t h e  missing c los ing  b racke t  F] should be inse r t ed  

between lunch and I, so t h a t  t h e  subordinate c l ause  becomes 

[NI [V] [NI 

and t h e  remaining 'daugthers '  become sisters of [P].  However, t h e  

tree-building algorithm does not  know t h i s ,  so i t  c a r r i e s  on addinq 

daughters t o  t h e  unclosed [ F  node ins tead of t h e  r o o t  [S] .  

Nevertheless,  d e s p i t e  being ' l o p s i d e d ' ,  t h e  t r e e  b u i l t  i n  t h i s  way 

is  s t i l l  useful .  The t r e e  shows u s  where missing c los ing brackets  

m i g h t  be inser ted:  f o r  example, t h e  t r e e  becomes well-formed only 

i f  t h e  F1 is  inse r t ed  a f t e r  a daughter of [F. 

I n  genera l ,  an unclosed node [ X  with n  daughters i n  t h e  o r i g i n a l  

t r e e  can be ' c losed '  i n  n  d i f f e r e n t  ways, leading t o  n  d i f f e r e n t  

parse-subtrees.  So, i f  an 'unclosed'  t r e e  such a s  t h e  one shown 

above has q 'unclosed'  hypertag-nodes [ I i < l > ,  [H<2>, [H<3>, . . . , [H<q>, 

where 

[H<l> has n < l >  daughters 

[H<2> has n<2> daughters 

[H<3> has n<3 > daughters 

[H<¶> has n<q> daughters 

then t h e r e  a r e  (n<l>*n<2>*n<3>* ...* nqc l , )  potentic: paroe-tress 



E.5 Choosing the 'best' parse-tree 

The final stage in parsing is a program which, starting from an 

'unclosed' tree such as the one above, generates all possible parse- 

trees and compares the likelihood of each (note the analogy with 

CIIAINPROBS: this program effectively generates all possible tag- 

sequences and compares their likelihoods; the difference is that now 

we are dealing with trees rather than simple strings). To do this, 

we must be able to associate a likelihood with a potential pnrse- 

tree; thls is done using a hyper tag -node  Z i k e l i l ~ o o d  function Lhn 

which assigns any given node a likelihood figure dependent on its 

daughter nodes and their likelihoods in turn. If a node A has 

daughters B, C. D: 

m 
B C D  

then at A we must store the likelihood that BCD is a 'valid' A (the 

c o n o t i t u e n t  l i k e z i h o o d  Lc(A,BCD) I ,  multiplied by the hypertag-node 
likelihoods of B, C, and D in turn: 

This recursive definition allows us to calculate a likelihood figure 

for the root [ S 1  node which takes into account all nodes and subtrees 

in the parse-tree. 

E.6 The phrase dictionary 

Values of the Constituent-Likelihood function Lc are stored in a 

Phraoe D i c i i o n o r y ,  which states, for each of the higher-level 

constztuents (N. S, V, P, etc.), the set of possible 'daughter- 

cOnstituent-~equence5', along with the relative likelihood of each 

poss~ble sequence. For example, the Phrase Dictionary will tell us 

that, in a subordinate clause (hypertagged [F]), the following 

daughter-constituent-sequences are very likely: 

CS [NI !V1 [ N I  

CS IN? [v1 

; the following sequences are less likely, but still possible: 



; but the following sequences are very unlikely: 

Any daughter-sequences not found in the Phrase Dictionary get a very 

low default probabil~ty (just above zero); in this way, we are 

ensured of oome analysis for any sentence (the analogy in CFIAINPROBS 

is that the Tag-Pair Bond function always has a value greater than 

zero, to ensure that no potential tag is ever assigned a zero likeli- 

hood; see Section B.5). 

E.7 A parse in three passes 

TO summarize, the CL Grammatical Parser outlined above will build a 

syntactic parse-tree in three passes. First, every tag in a text is 

assigned a set of potential hypertaggings, using a tag-poir-Zist 

and tagziot. Secondly, the set of hypertags at each tag ia disambigu- 

ated, by eliminating a11 but the likeliest hypertag-sequence; this 

is done using a hypertng-Likelihood function very similar to the 

tag-likelihood function currently used by CHAINPROBS. Thirdly, this 

'disambiguated' hypertag-sequence is converted into a set of poten- 

tial paree-trees, where each potential parse-tree has the missing 

closing brackets inserted differently; a hype~tog-node ZiksZihood 

function is used to compare likclihoode of competing potential parse- 

trees. 

In the final output, it will probably be useful to include not only 

the single 'best' parse-tree, but also a number of 'runners-up' 

(say three), in case the 'best' parse is found to be incorrect in 

postediting. This can he done quite easily, if we adopt an output 

format similar to that shown in Section E.3: there are columns for 

word, tag, and hypertng; and in addition, we need three more columns 

to show the three 'likeliest' combinations of inserted closing 

brackets. For example, the flnal output of the 'parse' of our 

earlier example sentence might be: 



VlORO TAG HYPERTAG THREE LIKELIEST PARSES 

59% 39% 2% 

------------------ [S 
as CS [F 
I PPlA 
was 

[NI 
BED2 [V 

eating VBG V1 
my PPS [ N 
lunch NN N 1 
I PPlA [NI 
declded VBD 
to 

[V1 
TO [ T 

get VB [V1 
a AT N 
c'+' NN NI 
of 

NI NIT] 
IN [P 

coffee NN [NI PINIT] PIT] P] 
S l 

This representation may seem difficult to understand at first; but 

hopefully posteditors will soon get to grips with it. The great 

advantage is of course the economy of space: to show three potential 

analyses, we do not need three complete trees. 

E.8 Residual problems 

Finally, it must be remembered that, of course, not all sentences 

will be as straightforward as the example above! There are many 

problems not touched upon (e.g. when the phrase-boundary is not 

explicitly marked, as in "I gave the baby milk to drink"); but then, 

ony approach to syntactic parsing will encounter difficulties with 

these and other stumbling blocks. The success rate of CHAINPROBS 

turned out to be much higher than we expected; the lesson to be 

learnt was that in the 'real' language found in a corpus, very few 

'pathological cases' actually turn up: Therefore, we have every hope 

that the CL Grammatical Parser will also be very successful. 

F OTiiER APPLICATIONS OF CL GRAMMAR 

AS explained in Sect-ion A . 3 ,  CL Grammar is generally applicable to 

many different forms of linguistic analysis. So far we have not 

explored all. the possibilities: for example, CL Analysis may also 

be useful i n  formal semantic analysis. Other applications will 

doubtless suggest themselves as our research continues. 



In general, we hope w e  have shown that s t a t i o t i c n l ,  p r o b n b i l i s t i c  

methods of analysis d o  have a place in linguistzcs, and specifically 

in the field of syntax. Furthermore, statistical analysis should 

n o t  be seen simply as  a 'heuristic' to fall back on when all else 

fails; CL analysis is entirely based on probabilities, and the 

Tagged LOB Carpus will be overwhelming evzdence that this approach 

works. 

REFERENCES 

Atwell, Eric Steven. 1982. 'LOB Corpus Tagging Project: Manual Pre- 
edit Handbook'. Department of Linguistics and Modern English 
Language and Department of Computer Studies, University of 
Lancaster. 

Atwell, Eric Steven. 1982. 'LOB Corpus Tagging Project: Manual Post- 
edit Handbook (A mini-grammar of LOB Corpus English, examining 
the types of error commonly made during automatic (computational) 
analysis of ordinary written English)'. Department of Linguistics 
and Modern English Language and Oepartment of Computer Studies, 
University of Lancaster. 

Francis, W. Nelson and Henry KuEera. 1964 (rev. eds. 1971 and 1979). 
MonuaZ o f  I n f o ~ m o t i o n  t o  Accompany o S t a n d a r d  Sample of P r e s e n t -  
Day E d i t e d  American Engldoh,  f o r  Uae w i t h D i g i t a 2  C o m p u t e r e .  
Department of Linguistics, Brown University. 

Garside, Roger and Geoffrey N. Leech. 1982. 'Grammatical Tagging of 
the LOB Corpus: General Survey'. In Stig Johansson, ed. Computer  
C o r p o r a  i n  E n g l i n ? ~  Language R a n e a r c h .  Norwegian Computing Centxe 
for thc ilurnanities, Bergen. 

Greene, Barbara and Gerald Rubin. 1971. A u t o m a t i c  G r a m m a t i c a l  
T a g g i n g  of EngZioli .  Department of Linguistics, Brown University. 

Johansson, Stig, Leech, Geoffrey N. and rielen Goodluck. 1978. Elnnuat 
of Inforrnat io , i  t o  Accompan!, t ire L n n ~ a ~ t e r - O s l o / R e r g ~ n  C D F P U D  o f  
R r i t i o h  E n g l i s h ,  f o r  Uee  w i t h  D i g i t a l  C o m p u t e r e .  Department of 
English, University of Oslo. 

Johansson, Stig and Mette-Cathrine Jnhr. 1982. 'Grammatical Tagging 
of the LOB Corpus: Predictinq Word Class from Word Endings'. 
In Stig Johansson, ed. Computer  C o r p o r a  i n  F n g l i n h  Language 
R a s e o r c h  Norwegian Computing Centre for the Humanities, Bergen. 
118-146. 

Leech, Geoffrey N., Garside, Roger and Eric Steven Atwell. 1983. 
'The Automatic Granmatlcal Tagging of the LOB Corpus' (pp. 13-33 
in this issue of ICAXE N c w o ) .  

Elarshall, Ian. 1982. 'Choice of Grammatical ilord-Class without 
Global Syntactic Analysis for Tagging Words in the LOB Corpus'. 
Department of Coinputer Studies, University of Lancaster. 



Peterson,  James. 1980. 'Computer Programs f o r  Detecting and Correc- 
t i n g  Spe l l ing  Errors'.  I n  C o m n i u n i c o t i o , ~ ~  of t h e  A s e o c i a t i o n  f o r  
Comput ing  M a c h i n e r y ,  2 3 .  1 2 .  676-87. 



APPENDIX A: Output from the trial run of the prototype 'spelling- 
checker'  
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MATERIAL AVAILABLE FROM BERGEN 

The follow~nq materlal is currently available on tape from Bergen 

through the International Computer Archive of Modern English (ICAME): 

~rown Corpus, text format I (without grammatical taqgingl: A revised 

version of the Brown Corpus with upper- and lower-case letters 

and other features whrch reduce the need for special codes and 

make the material "lore easily readable. A number of errors found 

during the tagging of the corpus have been corrected. Typographi- 

cal information is preserved; the same line division is used as 

in the original version from Brown University except that words 

at the end of the lrnc are never divided. 

Brown Corpus, text format I1 (without grammatical tagging): This 

version is identical to text format I, but typographical informa- 

tlan is reduced and the line division is new. 

Brown Corpus, KWIC concordance (also on microfiche): A complete con- 

cordance for all the words in the corpus, including word statistics 

showing the distribution in text samples and genre categories. The 

microfiche set includes the complete text of the corpus. 

LOB Corpus, text: The LOB Corpus is a British English counterpart of 

the Brown Corpus. It contains approximately a million words of 

printed text (500 text samples of about 2,000 words). 

LOB Corpus, KWIC concordance (also on microfiche): A complete concor- 

dance for all the words in the corpus. It includes word statistics 

for both the LOB Corpus and the Brown Corpus, showing the distri- 

butlon in text samples and genre categories for both corpora. The 

text of the LOB Corpus is not available on microfiche. 

London-Lund Corpus, text: The London-Lund Corpus contains samples of 

educated spoken English, in orthographic transcription with de- 

ta~led prosodic nlarklng. It conslsta of 87 'texts', each of some 

5,000 running words. The text categories represented arc spontane- 

ous conversation, spontaneous canunentary, spontaneous and prepared 

ordtlon, etc. 

London-Lund Corpus, KWlC concordance I: A complete concordance for 

the 34 texts representing spontaneous, surreptitiously recorded 



conversation (text categories 1-31, made available both in com- 

puterised and printed form (J. Svartvik and R. Quirk (eds.) A 

Corpus  o f  Engl io l t  C o n v e r o a t i o n ,  Lund Studies in English 56, Lund: 

C.W.K. Gleerup, 1980). 

London-Lund Corpus, KWIC concordance 11: A complete concordance for 

the remaining 53 texts of the London-Lund Corpus (text categories 

4-12). 

The material has been described in greater detail in previous issues 

of ICAME N e w o .  Prices and technical specifications are given on the 

order forms which accompany this newsletter. Note  t h a t  t h e  concordan-  

c e s  ore now o l s o  a v a i l a b l e  on h i g h e r - d e n s i t y  tapeo o t  a t ower  p r i c e .  

A printed manual accompanies tapes of the LOB Corpus. Printed manuals 

for the Brown Corpus cannot be obtained from Bergen. Some information 

on the London-Lund Corpus is distributed together with copies of the 

text and the KWIC concordances for the corpus. Users of the London- 

Lund material are, however, recommended to order the recent book by 

Svartvik e t  a l . ,  S U F U ~ U  o f  Spoken E n g l i a h :  R e p o r t  on R e o e o r c h  1 9 7 5 - 0 1 ,  

Lund Studies in English 63, Lund: C.W.K. Gleerup, 1982. The grammati- 

cally tagged version of the Brown Corpus can only be obtained from: 

Henry Kuzera, TEXT RESEARCH, 196 BoWen Street, Providence, R.I. 

02906, U.S.A. The Syntax Data Corpus, which consists of part of the 

Brown Corpus, with detailed syntactic tagging, can only be obtained 

from: Alvar EllegArd, Department of English, University of Gothenburg, 

Lundgrensgatan 7, 5-412 56 GGteborg, Sweden. 

BIBLIOGRAPHICAL SURVEY 

One of the main aims in establishing ICAME was 'to make possible and 

encourage the coordination of research effort and avoid duplication 

of research'. Since the start in 1977, material has been distributed 

to a range of research institutions in many countries, and it is 

becoming increasingly difficult to survey how it has been, and is 

being, used. Users are encouraged to send i n  i n f o r m a t i o n  on pubb ico -  

t i o n a ,  repor ta ,  and w o r k  i n  pragyeso related to the material. There 

is no need to report on work contained in the bibliography in Compu- 

ter Corpora i n  E n g l i s h  Languoge R e o e o ~ c h  (ed. by Stig Johansson, 

publ. by the Norwegian Computing Centre for the Humanities, Bergen 

1982). An updated bibliography will be included in a later issue of 

ICAME Newa. 



CONDITIONS ON THE USE OF ICAME CORPUS MATERIAL 

The primary purposes of the International Computer Archive of Modern 

English (ICAMEI are: 

(a) collecting and distributing information on li) English language 

material available for computer processing; and lii) linguistic 

research completed or in progress on this material; 

lbl compiling an archive of corpora to be located at the University 

of Bergen, from where copies of the material can be obtained at coit. 

The following conditions govern the use of corpus material distri- 

buted through ICRME: 

1 No copies of corpora, or parts of corpora, are to be distributed 

under any circumstances without the written permission of ICAME. 

2 Print-outs of corpora, or parts thereof, are to used for bona 

fide research of a non-profit mature. Holders of copies of corpora 

may not reproduce any texts, or parts of texts, for any purpose 

other than scholarly research without getting the written per- 

mission of the individual copyright holders, as listed in the 

manual or record sheet accompanying the corpus in question. (For 

material where there is no known copyright holder, the person/=/ 

who original'ly prepared the material in computerized form will 

be regarded as the copyright holder/s/.l 

3 Commercial publishers and other non-academic organizations 

wishing to make use of part or all of a corpus or a print-out 

thereof must ohtain permission from all the individual copyright 

holders involved. 

4 The person/s/ who originally prepared the material in computerized 

forin must be acknowledged in every subsequent use of it. 

EDITORIAL NOTE 

Further ICW!E newsletters will appear irregularly and will, for the 
time being be d~stributcd free of charge. The Editor is grateful for 
any rnformat~on or dacumentat~on which is relevant to the field of 
COnCeL'" of ICAME. 





ICAME NEWS is published by the Norwegian Computing Centre 
for the Humanities (NAVFs Em-senter for humanistisk forskning) 

Address: Harald Harfagresgate 31, P.O. 53, 5014 Bergen-University, Norway 




