
Archive of Modern English (ICAME) I

Published by: The Norwegian Computing Centre for the Humanities, Bergen
The Norwegian Research Council for Sience and the Humanities

I

Machine-readable
texts in NAVF English language

No.7
research May 1983

A m

CONTENTS

Seminar on the Use of Computers in English Language
Research

The Automatic Grammatical Tagging of the LOB Corpus

Ceoffreg Leech, Roger Corside, and E r i c Atws7.Z

Constituent-Likelihood Grammar

Erio A t w e t 2

Material Available from Bergen

Bibliographical Survey

Conditions on the Use of ICAHE Corpus Elaterial

Editor: Dr. Stig Johansson, Department of English,

University of Oslo, Noway.

SEMINAR ON THE USE OF COMPUTERS IN

ENGLISH LANGUAGE RESEARCH

September.13-l5 1982, Universrty of Stockholm, Sweden

This semznar - the thlrd in the series starting with the Bergen
semlnars in 1979 and 1981 - was organised by Magnus Ljung, Department
of English, University of Stockholm. Papers were read by academics

from a number of different research teams working with corpora of

machine-readable texts. The papers are listed below, with a short

outline of the main points raised (based on a report by Eric Atwell,

University of Lancaster). The two contributions by the Lancaster

group l7 and 10) are reproduced in full in this issue of ICANE News.
Stig Johansson's paper (8) is to appear in Computero and t h e Humani-

ties. There are also plans to publish papers from the seminar in an

issue of StockhoZm Popers in EngZiah Language ond L i t e r a t u r e . The

participants agreed to meet again May 30 - June 1, 1983, in Nijmegen.
For information on the forthcoming seminar, contact Jan harts,

English Department, University of Nijmegen, Erasmusplein 1,

6500.HD Nijmegen, Holland.

(1) Henry KuEera, Brown University

"Comments on the Brown Corpus"

HK talked about his forthcoming book (CO-authored with W. Nelson

Francis), containing lemmatized word frequency lists, and many

interesting new statrstics gleaned from the gramatlcally tagged

Brown Corpus. For example, 'informative' prose has many more words

per sentence, on average, than fictional texts, b u t we find roughly

the same number of predicates per sentence (so 'informatrve' prose

sentences are made very long by complex noun phrases). HK also

discussed his recent work in the field of Word Processing. Many IiP

packages currently available include a 'spelling-check' feature

which compares each word in e text with a Lexicon of valid words,

and flags words not found as probable misspellings; HK has been

developing an algor~thm whlch suggests corrections, that is, given

an 'invalid' word, it flnds the nearest match in the lexicon. His

program will also be able to detect certain spelling-errors which

current WP programs miss: certain 'valid' words are flagged if they

arc incompatible with their syntactic contexts (e.g. my in I my con-

e i d e r) .

(2) Antoinette Renouf, University of Birmingham

"Aspects of the Building of a Large Computer-Held Corpus of Text'

AR reported on the collection of English texts at the University of

Birmingham, and the computing facilities they have available during

its compilation. The Birmingham Corpus consists mainly of written

texts, but also includes about one and a half million words of

spoken English. The current size is over ten million words, and it

is still growing! However, in 1981, a Subcorpus of six million words

(1.5M spoken, 4.5M written) was separated out, to act as a static

'Interim' Corpus for the production of concordances, etc. These texts

are mainly British English (c 70%), and the remainder is mostly

American English. There is no poetry, nor any 'technical' language;

and the style is predominantly 'neutral' in formality. Most of the

genres found in the LOB and Brown Corpora are represented in the

Birmingham Corpus (except Category J), although no rigorous sampling

technique has been used in selecting the texts to be added; the

main criterion is simply that 'texts are chosen to add to the variety

and completeness of the Corpus'. Unlike the LOB and Brown Corpora,

which represent the English of a fixed period in time 11961). the

Birmingham Corpus is being continually updated as more and more texts

are added; almost all the texts were written after 1960, and most

belong to the late 70s and later.

Most texts were added to the Corpus using a Kurtzweil optical Scanner

which could 'read' books directly; however, the performance was

erratic. Another source was 'dump tapes' from computer typesetting

of newspapers, etc. Concordancing was another big prohlem; they used

the COCOA package, and hired the ICL 1900 Mainframe for exclusive

use for a couple of weekends:

131 John Sinclair, University of Birmingham

"The Implications for Linguistic Research of Access to a Large

Computer-Hold Corpus of Text'

In this talk, JS explained why he was building an 'open-ended' Corpus,

with few restrictions on size or subject-matter (in contrast to the

LOB and Brown Corpora). He argued that linguists still have no com-

plete or adequate theory of language; and any restrictions in the

design of a Corpus might tend to bias us towards one particular

theory. Work has begun on analysing collocation lists, but at Birming-

ham they are not interested in merely collecting statistics: they

a150 want to know why certain patterns occur in language. For example,

many words (e.g. matter1 could theoretically be used as a verb or a

noun, hut it turns out that in actual usage one of these two often

predominates to a marked degree (e . g . of 1160 occurrences of rnntter,

only 173 are verbs (and of these, all but 3 are negatives, mainly

it d o e s n ' t mattsrll. At Birmingham JS is trying to explain why such

things happen in usage; but at the moment, there is no theoretical

framework to fit such explanations into. Instead, they run the risk

of ending up with an open-ended list of unconnected 'theorems', such

as "questions involving the word matter are usually rhetorical".

The selection of texts to be added to the Birmingham Corpus is

deliberately free and fairly unrestricted, since, in a sense, they

cannot be sure in advance just what they are looking for. JS ended

by saying that linguists working on Corpus-based research need to

think carefully about the direction and purpose of their research;

corpus-based linguistics at present lacks a clear general theory or

set of guidelines.

14) Jan Hultgren, University of Stockholm

"3RIP: An Interactive Text Data Base System"

3RIP (pronounced "thrip"1 is a system for storing and accessing

large amounts of data, such as a corpus of English texts. A data

base is subdivided into records, and each record has an extensive

Reference Key to speed up and simplify sort and search operations.

An application of 3RIP of particular interest here is BLOB, an

implementation of the (untaggedl Brown and LOB Corpora. In BLOB,

each Category is treated as an independent data base (30 in all),

and each sentence is 2 Separate record. The text is divided up into

sentences rather than 'lines' as in the original Brown and LOB

Corpora because this is more useful; e.g. in KIYIC concordances, it

is more useful to be given a complete sentence context.

3RIP has many commercial, academic and other applications. The

largest 3RIP application at present comprises some 1.2M references

(more than 1000 million characters of text) to scientific articles;

this is available commercially in merica. The smallest 3RIP 'Corpus'

is a Shakespeare text of a few hundred records at Stockholm Universi-

ty.

(5) Benny Brodda, University of Stockholm

"The TAGGER: Presentation of a Tagging Program"

A technical problem in tagging programs is how to link tags with

their corresponding syntactic units. In word-tagging, these units

are the words, but in theory the term 'tagging' could be used to

cover higher levels as well, with 'tags' assigned to larger constitu-

ents.

The TAGGER is an interactive semi-automatic tagging system which

allows tags to be linked to words in a number of different ways. One

method is to have two separate files, one containing words only, and

the other containing tags only; corresponding tag and word have the

same record reference number, and the same position within that

record. Another method is to have only one file, with the tag immedi-

ately after the word (with a separator, /, hetween the two). A third
format has a line of words with a line of tags immediately following

(each tag is immediately below its corresponding word). These three

alternatives each have different advantages; for example, the first

format takes up less space in computer memory, but the third format

is much more 'readable' to humans.

The TAGGGR can take frles in any format as input, and can produce

files of any format as output. Initially, there wlll only be 'dummy'

tags; the linguist must then go through the text interactively,

nlakrng taqging decisions. Initially all 'dummy' tags etart with a

lower case letter; if any are 'accepted' or 'corrected' by the

linguist, this is signalled by changing the initial letter to

upper case. The TAGGER also takes a Lexicon as input; this is a

list of words and/or word-endings, each followed by one or more tags.

The TAGGER uses this Lexicon to suggest tags to replace 'dummy' tags.

However, unlike the LOB and Brown tagging systems, The TAGGER does

not take syntactic context into account.

(61 Magnus Ljung, University of Stockholm

"SEMTAG: Semantic Tagging of the Brown and LOB Corpora''

HI. talked about his project: the semantic tagging of a collection

of texts from Categories A, G, J, and N (c 200,000 words in all).

Unfortunately, unlike syntactic tagging, semantic tagging has no

obvious tagset 'given'; there is no clear, closed set of 'semantic

primitives'. Instead, ML used the classification system found in

dictionaries. Each word was marked with its 'sense number' according

to the Longman Dictionary availahle on magnetic tape. For example,

reoZised in The!, ~ e o Z i n e d t h a t he w o o d ~ u n k might be REAtIZE2. If a

dictionary entry included two or more homonyms, then the homonym-

number was given first; e.g. centre might be tagged CENTREZSH

(meaning '3rd sense of 2nd homonym of centre' - note that S is just
a separator!.

Semantic tagging of this kind tends to involve much more subjective

decision-making by linguists than the grammatical tagging of the

Brown and LOB Corpora. One interesting fact that NL has found so

far is that Longmans generally order the senses of a word correctly

according to their frequency of occurrence: sense 1 is by far the

most commonly used, followed by sense 2, and so on. In other words,

the frequency statistics agree very well with the intuitions of

Longman's lexicographers!

The tagging 50 far has been entirely 'manual', using The TAGGER

described above. ML would like an automatic semantic tagging system

analogous to the automatic grammatical tagging systems of Brown and

LOB; but he has no idea yet just how this might work (since there

are no obvious patterns in the semantic sense-numbers).

Unfortunately, ML had not been able to collate any statistics or

draw any conclusions from the tagged subcorpus yet, since he has been

preoccupied wlth the practical problems of actually getting the

SU ~ C O ~ P U S tagged. However, the outlook seems promising.

5

(7) Geoffrey Leech, University of Lancaster

"Progress Report from the Lancaster Project (l)'

GL described the progress made so far in the project to grammatically

tag the LOB Corpus. Each word in the Corpus is to be assigned a tag

from a closed set of 134 (e.g. JJ=adjective, NN=singular noun, etc.).

Unlike ML's Semantic Tagging, in the Lancaster Tagging project nearly

a11 tagging decisions are made automatically, by a suite of programs.

GL described the successive steps in the grammatical tagging process,

and talked about the programs in the Tagging Suite.

The first step in the tagging procedure is Manual Pre-editing:

various classes oE words which would prove to be problematic for the

Tagging Suite are dealt with 'by handV, that is, decisions are made

by a [human) linguist. In fact, very few words actually require any

'manual pre-editing': the btggest problem was words beginning with

a capital letter (the first word of a sentence must generally be

converted to lower case) .

Next, the text is 'verticalized': a program writes each word onto a

separate line of its own. Then, a program called WORDTAG adds a list

of one or more possible tags to each word (e.g. "go VB/NNq', i.e. the

word go can be a verb or a noun). WORDTAG adds this list of possible

tags to a word without looking at the context. Occasionally, however.

this is necessary: certain idiomatic sequences of words require

'syntactically uncharacteristic' tags (e.g. one is generally tagged

CD1 (CarDinal l), and anoiher is generally tagged DT (singular

DeTerminer), but the idiomatic combination one a n o t h e r is a

reflexive personal pronoun (PPLS). The next program, IDIOMTAG, deals

with such special cases. The final stage in the automatic analysis

is CHAINPROBS; this looks at the set of possible tags with each

word, and works out the 'relative likelihood' of each tag, by

looking at the 'immediate syntactic context'.

After the Tagging Suite has run, a Manual Postediting stage is

necessary to check the decisions made by the programs. In c 97% of

words, the tag chosen as 'likeliest' by CHAINPROBS is actually the

correct one; manual correction is naeded in the remaining c 3%.

(Sec furtller the paper by Geoffrey Leech et oz. in this issue of

I C A M 3 N e w o .)

(8) Stig Johansson, University of Oslo

"Word Frequency and Text Type - Some Observations Based on the LOB
Corpus of British English Texts"

The LOB Corpus is subdivided into Categories, according to the type

of text; SJ has been studying statistical differences in vocabulary

between the different genres. The most striking contrasts were

revealed when comparing the vocabulary of Category J (learned and

scientific English) with that of Categories K-R (fiction); the other

texts in the LOB Corpus were grouped under the broad headings

'newspapers' (Categories A-C), and 'miscellaneous ~nformativc prose'

(Categories D-HI.

SJ looked at the most frequent words in each of these four genres.

A 'distinctiveness coefficient' can be calculated, indicating

whether a word is unusually frequent in one particular genre; for

example, words like thuo, therefore, etc. arc much more frequent in

J than in K-R. This fact is not really so surprising; but SJ found

various other statistics which are not so obvious, for example:

J places more importance on NOUNS, whereas VERBS are more important

in K-R; fiction texts are more 'singular prone' (i.e. the ratio of

singular to plural nouns is significantly higher); personal

pronouns are most common in fiction, except w e ; possessive and

reflexive personal pronouns are also much commoner in K-R than in J,

except its, oar, their, itaetf, end theniseZves; and articles the

and on are significantly more frequent in J, but article o is

significantly mare frequent in K-R!

(9) Knut Hofland. Norwegian Computing Centre far the Humanities

"Implementation of the Lancaster Tagging Programs on a Non-Corpus

Text"

The LOB Corpus Grammatical Tagging Program Suite described by GL (7)

was designed specifically to tag the texts of the LOB Corpus. Even

in its 'raw' state before the automatic analysis, the Corpus contains

various markers not found in ordinary texts (e.g. the start of each

sentence is marked with a speclal symbol; headings and headlines are

marked; etc.). Therefore, KH decided it would be interesting to see

how well the LOB Tagging Suite could deal with something completely

different. The text he chose was the play Look Back in Anger by

Osborne; the LOB Corpus contains no plays, so this would he an added

d~fference.

KH first described various technical changes, needed to run the

programs on a UNIVAC computer instead of an ICL machine. To circum-

vent the Manual Pre-editing stage (see (71). KH wrote a program to

deal with word-initial capitals automatically; this resulted in a

number of errors (e.g. I was converted to lower case at the start

of a sentence), but saved time.

The test run was very successful; c 908 of words were tagged correctly

by the LOB Tagging programs in their original form. Minor changes

could improve this success rate; clearly, KH had shown that the LOB

Tagging Program Suite can be used to grammatically tag an&{ English

text with a high degree of accuracy.

l 1 0 1 Eric Atwell, University of Lancaster

"Progress Report from the Lancaster Project (21"

GL had briefly outlined the programs of the LOB Tagging Suite; EA

explained in greater detail how the 'relative likelihood' of a tag
is calculated. This is done using a general formula, which takes

into account the word that the tag is assigned to, and the 'inmediate

syntactic context': the tag immediately before and the tag immediate-

ly after the current tag. If either of these tags are 'ambiguous',

then two different fonnulac are used to calculate 'relative likeli-

hood'. In almost all cases, both formulae agree as to which tag is

likeliest with a given word.

This method of probabilistic analysis is new to linguistics; EA

went on to mention some of its other potential applications. One of

these is in Automatic Spelling-checking. Many Word Processors include

a facility to check the spellings of words in a text. but these

programs simply look up each word in a dictionary: syntactic context

is not taken into account at all. This means that many glaring errors

can still slip through; e.g. in I om able to prophecy the w h e t 7 > e r ,

no errors are detected by simple dictionary-lookup methods because

p~ophucy and w h e t h e r are valid words. However, syntactic analysis

can show that these words are incompatible with their syntactic

context. EA has alter~d the programs in the LOB Tagging Suite to

carry out such 'spelling-check syntactic analysis' on a small sample

text. Further research is under way to create a generally-applicable

W? syntax-analyser and -checker. (See further Eric Atwell's article

in this issue of ICAME Newn.1

(111 Tore Jansson, University of Stockholm

"Simulation of Phanotactic Word Division in Perception''

The 'Corpus' TJ is working on is in fact just five lines of phonetic

transcription. This test 'Corpus' is input to a program, which first

inserts all p o t e n t i a z word-boundaries: for example, the phrase o e e

his p o i n t will be represented as "s-i:-h-1-z-p-01-n-t". The program

then uses a set of rules to try to divide this continuous sequence

into separate words. One type of rule r e p l a c e 8 a hyphen with a blank,
if a word boundary is required; for example, one rule states that

"h" should begin a word. so the hyphen before "h" must be replaced

With a space. The second type of rule d e l e t e o a hyphen where a word

boundary cannot occur; for example, there are rules which state, in

essence, that each word must have at least one vowel, so the hyphen

in "3-1: h. .." is deleted. In the final output, the text should be
correctly divided into words, with no hyphens remaining (i.e. "si:

h12 polnt"). This is not always the case, as often some hyphens

remain, denoting an 'ambiguity'; this type of ambiguity may be

resolvable by syntactic analysis.

(121 Jan Svartvik and Gunnel Tottic, Universities of Lund and Uppsala

'English in Speech and Writing: Presentation of a Project"

"English in Speech and Writing" rs a research project in progress at

the Universities.of Lund and Uppsala, based on two corpora of

English texts: the LOB Corpus of written British English and the

London-Lund Corpus of spoken British English (LLC). JS talked about

how the LLC was compiled. Or~ginally, spoken material was collected

and transcribed at Un~versity College London by researchers workinq

on the Survey of English Usage. The Survey of Spoken English,

with which JS is pr~ncipally concerned, is a slater project of the

Survey of English Usage; ~ t s primary a m was to convert the spoken

material into machine-readable form, for use in computational analy-

sis. JS reported that this has now been completed, and that the

London-Lund Corpus is available for research, the whole corpus on

magnetic tape, and about one third of it, also in printed form, as

a book. The main polnts raised by JS concerned the grammatical

analysrs of the London-Lund Corpus, which includes both word-class

tagging and higher-level syntactic tagging (in which the basic unit

of analysis is not the sentence but the tone unit).

GT reported in greater detail on the English in Speech and Writing

project. A 'Minicorpus' of 10,000 words and a 'Midicorpus' of

100,000 words (available on tape) have been compiled. Both contain

a mixture of texts Erom the LLC and the LOB Corpus. The distinction

between written and spoken texts is strengthened by the exclusion

of LOB fiction texts (which contain dialogue). Some major areas

which are currently being investigated in the project are modality,

negation, and cohesion in speech and writing.

(13) Mats Eeg-Olofsson, University of Lund

"An Experiment in Statistical Taggingr'

Researchers in Lund have 'word-tagged' part of the London-Lund Corpus

'by hand', that is, with a linguist making all tagging decisions

interactively. ME used these tagged texts as the basis for an

experimental statistical model for taggin". He designed an experimen-

tal automatic tagging program which was i n t e g ~ o t e d (it can take into

account syntactic, morphological, and other levels of information),

p r o b a b i l i a t i c (rather than choosing one analysis to the exclusion

of all other possibilities, it o r d e r s all analyses according to

relative likelihood), h a i i o t i c (words are not tagged independently,

but according to context), and formm2 (testable by standard statisti-

cal methods).

In designing his experimental program, ME Eirst observed the pattern-

ings that occurred in the tagged texts. The aim was to apply Bayes'

formula, and write a probability function which 'encapsulated' the

tag-petternings found. To write this probability function, ME first

had to make some initial assumptions. He assumed that tag-pair

collocation was an important indicator of patternings, and that

individual tag-pattern palrings were Independent 'events', so that

the conditional ~ndependence assunlption formula could be applied

(p = pattern, t = tag):

?(p[ll ... p[nl / t[ll ... t[n]l = K ~ (~ [i] / t[i])
i = l.."

In other words. ME assumed that the tags on either side were a major

factor in working out the likelihood of the 'target' tag. Another

factor to be taken into account was the overall relatzve likelihood

of the 'target' tag appearing wrth the partzcular word being tagged.

The tag-set used was analogous to the one used in the LOB tagging

project, with about 100 tags denoting 'traditional' surface syntactic

Word classes. ME noted that the 'graphic word' is not the only

Pattern indicative of tagging; suffixes (e.g. '...-ly") or phrases

(e.g. "as well") may also be important patterns. ME'S tagging program

could be described as equivalent to a Markov chain process or a

probabilistic Finite State grammar.

TO run the experimental program, ME first had to extract a Tag-Pair

Frequency Table from a pre-tagged text. Interestingly, he found that

nosk possible tag-pair combinations never actually occurred in the

text: out of a theoretically possible c 10,000 tag-pair combinations,

only 1487 actually occurred in the 5000-word text. EIE also needed a
tagged wordlist, stating which tags could occur with each word; he

extracted a wordlilt from the 5000-word text for this purpose.

The trial run of his program, on the text from which the tag-pair

statistics and tagged wardlist had been extracted, was very impress-

ive: the tag chosen as 'likeliest' was correct with 99% of words:

However, we must remember that this was partly because the tay-pair

table and wordlist were 'tailor-made' for the particular text. In

particular, the wozdlist gave many words only one unambiguous tag

simply because it only ever appeared with that tag in the text: for

example, if the word b o t h c r only appeared as a noun in the

manually-tagged text, then it was unambiguously tagged as a noun in

the Wordlist.

To get a more 'realrstlc' success-rate flgurc, ME used the same

tag-palr statistics table and tagged wordlxst to tag a diffe~snt

5000-ward text. Thls time, the success rate was c 84%. Host of the

errors were due to omissions in the simple wordlist.

Overall, ME'S tagger was very similar to the LOB Tagging Suite, in

principle at least. However, the type of text it had to deal with

was very different from that found in the LOB Corpus: the spoken

English texts contained no punctuation (although they were divided

up into tone units), and they were full of pauses, indistinct

passages, phonetic transcriptions of 'unclear' words, hesitations,

etc. It is interesting that basically the same method of analysis

can be used for both written and spoken English.

THE AUTOMATIC GRAMMATICAL TAG61NG
OF THE LOB CORPUS

Ceoffrey L e e c h , Roger G a r s i d e , and Eric A t w e Z Z

University of Lancaster, England

In collaboration with the English Department, University of Oslo,'

and the Nowegian Conlputing Centre for the Humanities, BergenS2 we

have been engaged in the automatic grammatical tagging of the LOB

(Lancaster-Oslo/Ber~l Corpus of British English. The computer

programs for this task are running at a success rate of approximately

9 6 . 7 ~ , ~ and a substantial part of the 1,000,000-word corpus has

already been tagged.4 The purpose of this paper is to give an account

of the project, with special reference to the methods of tagging we

have adopted.

1 OVERVIEW OF THE PROJECT

To see the project in its overall context, w e must give some attention

to the preliminaries which preceded the tagging itself, and also to

the follow-up work which we intend to undertake when the tagging is

complete:

Pig. 1

rp--A---1
I

r---c- --1
I I , Preliminary I----$ Follow-up I

Data Analysis Data Analysis
L_- - -- - J L------_I

1.1 Preliminaries

The first stage of our work was collecting and analysing data from

the Tagged Brown Carpus. Our purpose was to make use of, and at the

same time to improve an, the automatic tagging of the Brown Corpus

(undertaken at Brown University 1971-8) .= The Tagged Brown Corpus was
kindly made available to us by Henry KuEera and Nelson Francis, who

also provided us With a copy of the automatic tagging program TAGGIT

-i written by Greene and Rubin (1971). An exploratory run of the program

on the LOB Corpus suggested that a new approach to tag selection

would be needed if we were to improve substantially on TAGGIT's

performance. For comparability with the Tagged Brown Corpus, we had

decided to use largely the same set of tags as were used by TAGGIT;

but in practice some changes were advisable, and as a result of these

changes, the new Tagset (see Appendix AI consisted of 134 tags (in-

cluding punctuation tags), as against Brown's 87. For example, we

found it desirable to introduce a number of additional tags ("NPL",

"NPT", "NNP", "JNP") where Brown had used only the one tag "NP"

(proper noun). But where changes were made, we have been careful to

preserve general comparability with the Brown Corpus, so that when

the LOB tagging is complete, it will be possible to make systematic

comparisons between the American and British corpora.

The chief advantage we derived from the Brown tagging project,

however, was that we were able to make substantial use of the Tagged

Brown Corpus itself as a database for our own Automatic Tagging. From

lists provided by the Norwegian Computing Centre for the Humanities,

our 0510 ~olleagues Stig Johansson and Mettc-Cathrine Jahr derived

lists of word-tag associations and suffix-tag associations which,

after revision, formed the kernel of our Tag-Assignment program (see

3.1 below). Also, by means of a group of Context Collecting programs,

we were able to derive from the corpus frequency lists of tag-

sequences, 2nd these were later adapted for inclusion in our Tag-

Selection program (see 3.21.

1.2 Follow-up work

Just as the tagging of the Brown Corpus provided us with a headstart

in our own project, so after the tagging of the LOB Corpus it will be

possible to use the data derived from the LOB tagging project, in-

cluding the tagged Corpus itself, as an input to further automatic

tagging programs, which will improve on our programs just as these

were an iinprovement on the Brown programs. Corpus-based automatic

language analysis is one area of linguistic research where results

are cumulative, so we hope, in a follow-up to this project, to revise

and imprr,-ie the programs Eor implementation on further corpora. For

this to happen, however, various frequency listings must be obtained

from the Tagged LOB Corpus. Such listings (in particular, a lemma-

tised word-frequency listing of the LOB Corpus) will also he useful

for other research purposes, e.g. far comparison with the Brown Corpus

and with the London-Lund Corpus.

2 THE OVERALL PROCESS OF TAGGING

Having looked briefly at stages (AI and (C) in Fig. 1, we may now

examine the middle box (01, dealing with the overall tagging process.

The contents of this box we again divide into three stages:

As may be expected with programs acting on unrestricted language

input, the automatic tagging programs require both a pre-editing

phase, where the human investigator prepares the corpus for input,

and a post-editing phase, where he corrects any errors made by

automatic tagging. Manual pre-editing and post-editing are both,

however, carried out with the aid of computer programs. We give a

brlef account of these stages (A and C in Fig. 21 before dealing with

the automatic tagging programs themselves.

At the start of the process, the Raw Corpus (the Corpus in its un-

tagged orthographic form) exists in a "horizontal" format; i.e. it

reads from left to right in the normal way. A Verticalization Program

converts this corpus into a 'Vertical Corpus" in which one word occurs

beneath another in a vertical column. At the same time, the Verticali-

zation Program makes automatic changes which will later help the

tagging. These include supplying missing punctuation, splitking en-

clitic words (n't, 'ZZ, etc.] from their predecessors, changing

capitol letters to lower case at the beginning of sentences, in

headings, etc.; and marking foreign words, formulae, and other

exceptional features of the text. The Vertiealiration Program also

creates a number of colun~ns alongside the text, so that various kinds

of information (orthographic, lexical, syntactic1 can be recorded for

future users of the corpus.

When the Verticalization of the corpus takes place, another set of

programs produces "Editliste" of particular text features which have

to be checked by a human editor to see whether they have to be altered

in order to be suitable input to the Automatic Tagging. The most

important lists are those of "CAPITALS" (non-sentence-initial words

beginning with a capital letter) and "UNCAPITALS" (sentcnce-initial

words whose capital letter will have been changed to lower case by

the Verticalization Program). For example, if a sentence begins with

a proper name such as John, the Program will have changed this to

l , and a manual editor will then have to change it back again. The

reason for these changes in capitalization is that the Automatic

Tagging programs make use of word-initial capitals in deciding what

kind of tags to assign to a word (most words beginning with a capital

end up heing tagged as proper names: see 3.1 and Appendix D].

Although the majority of pre-editing changes are made automatically

by the Verticalization Program, Pre-editing has proved to be a time-

consuming process, especially since all pre-editing decisions have

had to be carefully standardized and entered in a "?re-editing

Manual". In any further tagging projects, we will try to eliminate

manual pre-editing, e.g. by enabling the automatic tagging programs

to accept a word with an initial capital as a possible variant of a

lower case word. For example, if both Roae and rose occurred in the

same text, the capital of the former word would be reduced to lower

case; but if Rose only occurred in the capitalized version, the capi-

tal would be retained, and the word would be analysed as a proper

noun. In this way, manual pre-editing could be replaced by automatic

pre-editing, and any addit~onal errors whlch resulted from thrs would

simply add to the number of words requiring correction at the post-

editing phase. 6

2.2 Post-editing

Like Pre-editing, post-editing currently has both an automatic and a

manual aspect. The Vertical Corpus, after automatic tagging, contains,

alongside each word, one or more grammatical tags, placed in order

of the~r likelihood of occurring in this context. The tag which the

proqnams have selected as the correct one is clearly indicated (see

Fig. 4 below). Thus the task of the manual post-editor is to check

the decisions made by the program, and to mark any corrections which

have to be made. With more than a million words to check, this is an

exceedingly time-consuming task, and it is therefore worthwhile using

the computer to ease the human editor's task in any practicable way.

One way of doing this is to present the output in a special form in

which the text is arranged in two vertical columns per page, the word

and the tag lying alongside one another for ease of reading. Into

this "Vertical Output" there is built an additional aid for the post-

editor: it is passible to set a threshold below which the likelihood

of error is low enough to be disregarded by the initial post-editor.

Sample analyses have shown that 60'6 of the text-words are unambiguous-

ly tagged; that of the 40% which are ambiguously tagged, 64% have a
7 likelihood, as calculated by the Tag Selection Program (see 3.2) ,

of more than 90%; and that these have only a 0.5% risk of being

erroneous. This means that over the whole sample 86% of words can be

unambiguously tagged with less than 1% error. In these relatively

safe Cases, the output listing simply assumes the one tag to be

correct, and gives alternative taggings only for the 14% of words

for which the risk of error is relatively high. A specimen of this

"Vertical Output" is given in Appendix E.

This facilitates the first manual post-edit, but to ensure that all

errors have heen caught, a second stage of manual post-editing will

take place, this time on a "rehorizontalized" version of the corpus,

in which each word in a line has a single tag beneath it, as in

Appendix F.

Once it has undergone manual correction, this version of the corpus

will be available for distribution to users. There will also, however,

be a vertical-format "Rolls-Royce" version of the corpus, which will

contain all the information about the original text recorded in the

columns of the Verticalization Program (see 2.1) as well a. the

grammatical tag of each word. This version is the authoritative

tagged LOB Corpus, and will enable users to reconstruct the original

text. For example, if one wants to study the relation between ortho-

graphy and gramar, this version will preserve orthographic informa-

tion excluded from the "rehorizontalized" version.

3 AUTOMATIC TAGGING

We now turn to the Automatic Tagging programs which form the heart

of the project, and constitute its main contribution to research.

once again, the contents of the middle box of the previous diagram

(B in Fig. 21 must itself be broken down into three logically separ-

able processes:

Fig. 3

AUTOMATIC TAGGING

IDIOM
ASSIGNMENT TAGGING SELECTION

For development purposes, it was convenient to write a separate pro-

gram for each of these three processes;8 but it would be easy enough

in principle to combine them all into a single program. Logically

speaking, the Automatic Tagging divides into Tag Assignment (whereby

each word in the corpus is assigned one or more possible tags), and

Tag Selection (whereby a single tag is selected as the correct one

in context, from the one or more alternatives generated by Tag Assign-

ment). It was as something of an afterthought that we added to the

Tag Assignment program (WORDTAG) and the Tag Selection program

(CWINPROBS) a third, intermediate program (IDIOMTAG) to deal with

various grammatically anomalous word-sequences which, without intend-

ing any technical usage of the term, we may call "idioms".

3.1 Tag Assignment

The simplest kind of Tag Assignment procedure would be just a look-

up in a WORDLIST or dictionary specifying the tagls) associated with

each word. In addition to such a Wordlist, the Brown Tagging Program

TAGGIT has a SUFFIXLIST, or list of pairings of word-endings and tags

(for example, the ending -NESS is associated with nouns). We follow

Brown in this, using a Wordlist of over 7000 words, and a Suffixlist

of approximately 660 word-endings.' Further, the LOB Assignment

Program contains a number of procedures for dealing with words con-

taininr, hypl:cns, words beginning with a capital letter, words ending

with - X , with 'S, etc. The advantages of having a SUFFIXLIST are

that (a) the WORDLIST can be shortened, since words whose wordclass

is predictable from their ending can be omitted from it; and (bl the

set of wards accepted by the program can he open-ended, and can even

include neologisms, rare words, nonsense words, etc. These advantages

also apply to the procedures for dealing with hyphenated and capital-

ized words.

The Tag Assignment Program reads each word in turn, and carries out

a series of testing procedures, to decide how the word should he

tagged. The procedures are crucially ordered, so that if one procedure

fails to tag a word, the word drops through to the next procedure. If

none of the tag-assignment procedures is successful, the word is

qiven a set of default tags. The program's structure can be sumarized

at its simplest by listing the major procedures as follows (where

W = the word currently heing tagged):

(1) Is U i n t h e VORDLIST?

I£ S O , assign the tags given in the WORDLIST

(21 I o H o number, a a i n g Z e L e t t e r , or o Z e t t a r p r e c e d e d o r f a t l o w e d
b y a number of d i g i t s ?

If so, assign special tags.

(3) Doea W c o n t a i n o hyphen?

If so, carry out the special procedure APPLYHYPHEN.

(4) Does W lznve o w o r d - i n i t i n 2 c o p i t n z (V I C l ?

If so, carry out the special procedure APPLYWIC.

(5) Does W end w i t h one of t h e e n d i n g s i n t h e SUFFIXLIST?

If so, asslgn the tags specified in thc SUFFIXLIST.

(6) Doeo V e n d i n -S?

If so, apply an - B stripping procedure, and check again whether
W is in the WORDLIST, or failing that, the SUFFIXLIST. If it is,
apply the tags given in the WORDLIST or SUFFIXLIST, retaining
only those tags which are compatible with - 8 .

If not, assign default tags for words ending in - o .

17) I f none o f t h e above a p p t y , assign default tags for words not
ending in - e .

APPLYHYPHEN and APPLYWIC are 'macroprocedures' which themselves con-

sist of a set of tests comparable to those of the main program. For

further details, see the Flowcharts in Appendices B - D.

The output of the Tag Selection Program is a version of the Vertical

Corpus in which one or more grammatical tags (with accompanying

rarity markers e or % if appropriate)'' are entered alongside each

word. As an additional useful feature, this program provides a diagnos-

tic [in the form of an integer between 0 and 1001 indicating the

tagging decision which led to the tag-assignment of each word. This

enables the efficacy oE each procedure in the program to be monitored,

so that any improvement effected by changes in the program can be

measured and analysed. In this respect, the program is self-evaluating

It can also he readily updated through revisions to the Tag-set,

Wordlist, or Suffixlist.

3.2 Tag Selection

If one part of the project can be said to have made a particular con-

tribution to automatic language processing, it is the Tag Selection

Program (CIiAINPROBSl, the structure of which is described in greater

detail in Marshal1 (1982). This program operates on a principle quite

different from that of the Tag Selection part of the program used on

the Brown Corpus. The Brown program used a set of CONTEXT FRAME RULES,

which eliminated tags on the current word if they were incompatible

with tag5 on the words within a span of two to the left or two to the

right of the current word (W). Thus assuming a sequence of words

-2, -1, W, +l, +2, an attempt was made to disambiguate W on the

evidence of tags already unambiguously assigned to words -2, -1, +l,

or +2. The rules worked only if one or more of these words were un-

ambiguously tagged, and consequently often failed on sequences of

ambiguous words. Moreover, as many as 80% of the applications of the

Context Prme Rules made use of only one word to the left or to the

right of W. These observstions, made by running the Brown Program

over part of the LOB Corpus, led us to develop, as a prototype of the

LOB Taq-Selection Program, a program which computes transitional

probabilities between one tag and the next for all comhinations or

possible tags, end chooses the most likely path through a set of

ambiguous tags on this basis.

Given a sequence of ambiguous tags, the prototype Tag-Selection

Program computed all possible comhinatlons of tag-sequences [i.e. all

possible paths), building up a search tree. It treated each possible

Tag Sequence or path as a Pirst-order Markov chain, assigning to each

path a probability relative to other paths, and reducing by a constant

Scaling factor the likelihood of sequences containing tags marked

with a rarity marker Q or %. Our assumption was that the frequency of

tag sequences in the Tagged Brown Corpus would be a good guide to the

probability of such sequences in the LOB Corpus; these frequencies

were therefore extracted from the Brown Corpus data, and adjusted to

take account of changes we had made to the Brown Tag-set. We expected

that the choice of tags on the basis of first-order probabilities

would provide a rough-and-ready tag-selection procedure which would

then have to be refined to take account of higher-order probabilities.

It is generally assumed, following Chomsky l1957:18-25). that a first-

order Markov process is an inadequate model of human language. We

therefore found it encouraging that the success rate of this simple

first-order probabilistic algorithm, when tried out on a sample of

Over 15,000 words of the LOB Corpus, was as high as 94%. An example

of the output of this program (from Marshal1 1982) is given in Fig. 4:

Pig. 4

this

task

involved

a

very

great

deal

of

detailed

work

for

the

committee

In this output, the tags supplied by the Tag Assignment Program are

accompanied by a probability expressed as a percentage. For example,

the entry for the word i n v o l v e d ([VBD]/90 VBN/10 JJ@/O) indicates

that the tag VBD 'past tense verb' has an estimated probability of

90%; that the tag VBN 'past participle' has an estimated probability

of 10%; and that the tag JJ 'adjective' has an estimated probability

of 0%. The symbol B after J,7 means that the Tag Assignment program has

already marked the 'adjective' tag as rare for this word lsee Note 10).

The square brackets enclosing the 'past tense' tag indicate that this

tag has been selected as correct by the Tag Selection Program. (The

square brackets are used to indicate the preferred tag for every word

which is marked as ambiguous; where the word has only one assigned

tag, this marking is omitted as unnecessary.)

An improved Tag Select-ion Program was developed as a result of an

analysis of the errors made by the prototype program. We realised that

dn attempt to supplement the first-order transition matrix by a second-

order matrix would lead to a vast increase in the amount of data to

be handled as part of the program, with only a marginal increase in

the program's success. A more practical approach would be to concen-

trate on those limited areas where failure to take account of longer

sequences resulted in errors, and to introduce a scaling factor to

adjust such sequences in the direction of the required result. For

instance, the occurrence of an adverb between two verb forms (a s in

hao r e c e n t l y viaited) often led to the mistaken selection of WLl

rather than VBN for the second verb, and this mistake could be correc-

ted by downgrading the likelihood oE a triple consisting of the verb

be or hove followed by an adverb followed by a past tense verb.

Similarly, many errors resulted from sequences such as l i v e and w o r k ,

where we would expect the same word-class to occur on either side of

the coordinator - something which an algorithm using frequency of
tag-pairs alone could not predict. This again could be handled by

boosting or reducing the predicted likelihood of certain tag triples.

A further useful addition to the program was an alternative method

of calculating relative likelihood, making use of the probability of

a word's belonging to a particular grammatical class, rather than the

probability of the occurrence of a whole sequence of tags. This serves

as a cross-check on the 'sequence probability' method, and appears

to be more accurate for some classes of cases. These improvements,

together with the introduction of an Idiom Tagging program lsee 3.3

below), resulted in an overall success rate of between 96.5% and 97.0%.

Having tried out the heuristic principle that error-analysis of a

program's output can be fed back into the program, enabling it to

increase its accuracy, we anticipate that a further analysis of errors

after post-edlting of the LOB Corpus will lead to further imprownents.

3.3 Idiom Tagging

The third tagging program, which intervenes between the Tag Assign-

ment and Tag Selection programs, is an Idiom Tagging Program (IDIOM-

TAG1 developed as a means of dealing with idiosyncratic word sequence%

which would otherwise cause difficulty for the automatic tagging. One

set of anomalous cases conslsts of sequences whlch are best treated,

grammatically, as a single word: for example, in order that is tagged

as a single conjunction, n s to as a single preposition, and e a c h other

as a single pronoun. Another group consists of sequences in which a

given word-type is associated with a neighbouring grammatical category;

for example, preceding the preposition by, a word like invoked is

usually a past participle rather than a past tense verb. The Idiom

Tagging Program is flexible in the sorts of sequence it can recognize,

and in the sorts of operation it can perform: it can look either at

the tags associated with a word, or at the word itself; it can look

at any combination of words and tags, with or without intervening

words. It can delete tags, add tags, or change the probability of

tags. It uses an Idiom Dictionary to which new entries may be added

as they arise in the corpus. In theory. the program can handle any

number of idiomatic sequences, and thereby anticipate likely mis-

tagqinqs by the Tag Selection Program; in practice, in the prcsent

project, we are using it in a rather limited way, to deal with a few

areas of difficulty. Although this program might seem to be an ad

hoc device, it is worth bearing in mind that any fully automatic

language analysis system has to come to terms with problems of lexi-

cal idiosyncrasy.

4 FUTURE PROSPECTS

Our present overriding objective (in cooperation with our collabora-

tors in Norway1 is to complete the grammatical tagging of the LOB

Corpus by the summer of 1983, and to make it available for research,

through the Norwegian Computing Centre for the Humanities. We hope

that its value as a research facility will more than justify the

research which has Ted to the development of the Automatic Tagging

programs. But in addition, w e believe that the considerable success

of these programs has helped to vindicate the value of corpus-based

research in the automatic analysis of texts. The strength of computa-

tional corpus-based research is that the programs have to be designed

to operate on unrestricted input, and can be progressively enhanced

by the 'recycling' of data already analysed into the database.

If resources are available for future research, we hope to eliminate

manual pre-editing, and to reduce further the percentage of error to

be corrected in post-editing. One method for reducing error would be

to derive different tag-pair frequencies from different kinds of text,

and to use these in a 'fine-tuning' of the transition matrix for

various styles of input text. For example, the frequencies for

scientific and for fictional writing can be supposed to differ con-

siderably, and statistical adjustments of the program to deal with

these differences can be expected to eliminate additional errors.

Even so, there will still be errors which cannot be corrected by cn-

hancement of the present programs. Like KuEera and Francis (see

Francis 19801, we have found special problems with certain classes

of ambiguity, where the choice of wordclass requires reference to a
wide context. Three difficult ambiguities are:

(i) that between XN and CS (e.g. after can be a preposition or a

conjunction);

(ii) that between IN and RP or RI (e.g. in can be a preposition or

a prepositional adverb); and

(iii) that between VBD and VBN (e.g. acquired can be a past tense

verb or a past participle).

The following example shows the sort of problem which arises with the

last case:

... some local authorities ... hove not only carried out a very
good business deal for themselves but also acquired a beauty
spot for their people.

It is notable that if the word houe were omitted from this sentence,

the word noquired. which is the fourteenth word following it, would

be changed from a VBN to VBD. This is because c o r ~ i e d , which by

vlrtue of the coordinate construction must be matched by acquired,

would no longer be marked as the second verb of a perfective (have +
past participle) construction. In other words, for this disambigua-

tion a s p a n of 14 words to the left of the target word is needed.

Such diffzcultles inevitably lead us to consider the deficiencies of

word-tagging as an autonomous level of analysis. The most obviously

valuable levels of analysis to be added to word-tagging would be

(a) syntactic analysis or parsing of a corpus; and (bl semantic

tagging, whereby senses of words, as well as their grammatical cate-

gories, would be identified. These additional levels, on which work

with the LOB Corpus has only recently begun,'' would have to be added

to the LOB Automatic Tagging programs if success in word-tagging were

to approach 1008. The VBD/VBN anbiguity cited above, for example,

could be successfully resolved only by a program which carried out

recognition and tagging of larger-than-word units. There are strong

reasons, indeed, for believing that the tagging programs will only

reach their full potential when they are implemented in parallel with

syntactic and (possibly) semantic analysis programs. These further

challenges will remain when the present project is completed.

NOTES

1 Stig Johansson and Mette-Cathrine Jahr (see Jobansson and Jahr
1982) have made major contributions to the project in the prepara-
tion of the WORDLIST and SUFPIXLIST (see 3.11. They are also under-
taking roughly half of the post-editing. The research at Lancaster
has been conducted by Ian Marshall, as well as the present authors.
The Lancaster project lias been supported by the Social Science
Research Council (Research Grant HR 7081/1).

2 The Norwegian Computing Centre for the Humanities (director Jostein
Haugel has provided text processing facilities essential to the
project. lie have particularly appreciated the programming support
provided at the Centre by Knut Hofland.

3 The percentage of 96.7% is based on the post-editing of c. 100
texts (i.e. c. 200,000 text words, or 20% of the Corpus). These
texts are from categories B, C, P, G and R, representing a
varied cross-section of the Corpus. There is little variation in
the taooino success-rate between different catenaries. The fioure ~ - -~ - - ~ ~- - - 2 ~ >

of 96.7% excludes errors An the output which are not due to auto-
matic tagging (these are chiefly pre-editing errors, and account
for C. 0.1% of all words). Punctuation tags [see Appendix A) are
discounted in calculating the success-rate.

4 Approximately 559 of the Corpus has been automatically tagged by
November 1982.

5 Reported in Francis (1980); for results and analysis of the auto-
matic tagging, see Prancis and Kurera (19821.

G An experiment carried out by Knut Hofland at Bergen in 1982 gave
encouraging support to the view that manual prc-editing could be
dispensed with. The LOB tagging programs were applied to a machine-
readable copy of John Osbornc's Look U, lck in Aliyer, a text not in-
cluded in the LOB Corpus. Automatic pre-processing followed by

automatic tagging resulted in a success-rate in the region of 90%.
This was without modifications to the programs themselves, which
are designed to accept the specially pre-edited text of the LOB
Corpus.(See p. 7f. above.)

7 See Marshall l1982:lO-12) for further details.

8 Each of the three programs was written by a different member of
the research team: A by Roger Garside, B by Eric Atwell, and C by
Ian Marshall.

9 The Brown Wordlist contained c. 3,000 words, and the Brown Suffix-
list contained c. 450 word-endings. See Johaneson and Jahr (1982)
on the LOB suffixlist.

10 The marker d indicates that a tag has (notionally) an intrinsic
likelihood of 10% or less; the marker $ indicates that a tag has
(notionally) an intrinsic likelihood of 1% or less. The tags are
also output in order of likelihood, more likely tags being placed
to the left of less likely ones. To this extent, the Tag Selection
program makes use of probabilities.

11 Roger Garside and Fanny Leech are currently working on programs to
be applied in the parsing of the LOB Corpus. Manual work on
semantic tagging is being undertaken at Stockholm by Nagnus Ljung.

REFERENCES

Chomsky, N. 1957. S y n t a c t i c S t r u c t u F e ~ . The Hague: Mouton.

Francis, W. Nelson. 1980. 'A Tagged Corpus - Problems and Prospects'.
In S. Greenbaum, G. Leech, and S. Svartvik, eds. Studieo in E n g l i s h
L i n g u i s t i c e - for RnndoZph Q u i r k . London: Longman. 192-209.

Francis, W. Nelson and Henry KuEera. 1982. Frequency Anolys io of
HngZieh Usage: Lezicon and C~ommor. Boston: Houghton Mifflin.

Greene, Barbara B. and Gerald M. Rubin. 1971. 'Automatic Grammatical
Tagging of English'. Providence, R.I.: Department of Linguistics.
Brown University.

Johansson, Stig and Mette-Cathrine Jahr. 1982. 'Grammatical Tagging
of the LOB Corpus: Predicting Word Class from Word Endings'. In
S. Johansson, ed. Computer Corpora i n EngZiol> Language Research.
Norwegian Computing Centre for the Humanities, Bergen. 118-46.

Marshall, Ian. 1982. 'Choice of Grammatical Word-Class without Global
Syntactic Analysis for Tagging Words in the LOB Corpus'. Department
of Computer Studies, University of Lancaster.

APPENDIX A: A SELECTION OF TAGS FROM THE LOB TAGSET

Note 1: The following punctuation tags represent themselves: " " " ,, " (" , " ' 8 , " " 8 " " ' - V " * ' V . , ... , ") " , "." " " W " . M " " . , , S . , . , ,
Note 2: The letter "S" added to a tag marks it as plural; e.g. "NNS"

= "plural common noun"

Note 3: The dollar sign added to a tag marks it as genitive or
possessive; e . g . "NNSS" = "genitive plural common noun".

&F0

AT

AT1

CD

CD-CD

CS

DT

OTI

IN

JJ

JJB

NNU

NN

NNP

NP -
NPL

NPT

NR

00

PPlA

PP10

PP2

PP3

QL

RB

RI

RP

VB

VBD

VBN

VBZ

formula

singular article (a, on, every1

singular or plural article (t h e , no)

cardinal numeral

hyphenated pair of cardinal numerals

subordinating conjunction

singular determiner

singular or plural determiner

preposition

adjective

attributive adjective

unit of measurement unmarked for number (e.g. ft., c c . , m.p.h.)

singular common noun

singular common noun with word-initial capital (e.g. I r i o i ~ r n a n)

singular proper noun

singular locative noun with word-initial capital (e.g. Square)

singular titular noun with word-initial capital (e.g. M r . Lord1

singular adverbial noun (e.g. north, home)

ordinal numeral

I

me

you

it

qualifier (e.g. v e r y , more)

adverb

prepositional adverb (homograph of preposition)

prepositional adverb which can also be a particle

verb (uninflected form)

past tense verb

past participle

verb (3rd person singular present tense)

W P ~ I X B: ~eneral flowdurt of Tag A s s i v t hogram (see 3.1)

Rarpmber and strip
i f m1 1

Tag as letter.
digit, fonrmla.
etc.2

Apply tags £ran

KnmLISP

TN3
M e t e "stardad"
prefix (if any)

APPLwYEJEm

(see A l T m 3 . X Cl

a t m n , else NNS VBZ Ff
.

(Ff rnne, then
-B, else t<N VB JJ
.

I
If gclutrve, retan tags that talre 5 (i f m e , then m$ or NNS$) F

&

NOTES

1 if the word ends in " 8 apostrophe" then strip the apostrophe; if
the word ends in "apostrophe a" then strip both characters (and
any preceding full-stop).

2 "Non-words" are the following:

a letter followed by zero or more digits l0 to 91, possibly
followed by a single, double, or triple prime, tagged Z Z

a number' followed by "st", "nd", "rd" or "th" , tagged 00
a number followed by " S " tagged CDS

a number containing ' - " , tagged CD-CD

a number followed by "apostrophe ss', tagged CD$

a number followed (possibly) by a letter, tagged CD

a word containing a superscript or subscript, tagged sFO

a word containing letters and digits, but no hyphen, tagged SF0

*In this context, a "number" means a sequence of digits (0-9)
perhaps also including ". ", " , ' and "/".

3 The "standard" prefixes include "a-". "CO-", "counter-", "de-"
"hyper-", 'tmis-mo ,rout-tm , W over-". "re-", "retro-", "super-", and
"trans-".

4 Words ending "chcs", "shes", "sses", "rzes", "oes", "xes" have
the "es" removed: words with 5 or more letters and ending in "ies"
have the "ies' changed to "y"; words ending in "full-stop s " have
both characters removed; other words ending in "S" (unless they
end in " s s ") have it removed.

5 Tags that take -e are VB (becoming VBZI and CD, NN, NNP, NNU, NP,
NPL, NPT, NR (becoming COS, NNS, NNPS, NNUS, NPS. NPLS, NPTS, NRS)

RppnUorX C: Tagging dec%lons of AWLYHWK3
I (Note: "Partrard" the charact- after the last hyphPn)

APPLYWIC
No

(see .Am. D) Retain

to Partwvd
that*

- 9
-

VBZI

Default:

Default:

NN Ve &is

1 "WIC" means "Ward-initial Capital"

2 Sec Note 4, Appendix B.

3 The "Hyphen-List" consists of "class', "hand", "like", "price",
"proof", "quality", "range", "rate", and scale".

4 See Note 5 , Appendix B.

5 For words not ending in " S " , if IN is one of the tags, tag the
word NN JJe; if VBN is one of the tags, tag the word JJ; if VBG
is one of the tags, tag the word JJ NN VBGI; if NNU is one of the
tags, tag the word JJB; if NN with "normal" probability 15 one of
the tags, tag the word NN JJB; otherwise leave the tags unchanged.

G For words ending in " S " , if IN is one of the tags, tag the word
NNS; if VBG is one of the tags, tag the word NNS; if NNU is one
of the tags, the tag is JJB; if NW with "normal probability" is
one of the tags, the tag is NNS; otherw~se retain tags that take
" 6 " (see Note 5. Appendix B). If there are none, then tag the word
NNS VBZ.

epmmnt D: ragging decisiow of APPLYWIC

("WC" -S "word-initial Capital")

Tags frcm
Yes WIC Suffix

List

Default: NP
(if m, then

M

Default: NPS
if abbrevht ion,
else NP

Notes

1 *he NIC suffix ~ i ~ t contains the following endings: "ic',
, , e 5 e q m , < r i t e t s , "esque" . ?-ish", uisml*, "can", "ian" , "woman",
"women", "ation", "ist" .

2 See Note 4, Appendix B.

3 see ~ o t e 5, Appendix B.

APPENDIX E: SPECIMEN OF VERTICAL OUTPUT (before post-editing)

thus

it

is

clear

that

the

predominant

organization

particularly

in

the

distribution

of

manufactured

goods

is

the

wholesale

merchant

who

carries

stocks

RB

IN

AT1

NN

IN

JJ

NNS

BEZ

AT1

JJ

NN

WP

VBZ

NNS

APPENDIX F: THE SAME PASSAGE AS RKHORIZONTALIZED OUTPUT

^ thus it is clear that the predominant organization, particularly

" RB PP3 BEZ JJ CS AT1 JJ NN , RB

in the distribution of manufactured goods, is the wholesale merchant

IN AT1 NN IN JJ NNS . BEZ AT1 JJ NN

who carries stocks.

iW VBZ NNS .

CONSTITUENT-LIKELIHOOD GRAMMAR

Eric Steuen AtweZZ

Univerezty of Lancaster, England

A INTRODUCTION

The paper by Leech et 0 2 . describes the aims of the LOB Corpus Gramma-

tical Tagging project, and explains the suite of programs we are

us~ng to achieve these aims. In this paper, I would like to look in

greater detail at the theoretical basis of these programs; I shall

attempt to explain exactly what constituent-ZikeZiilood grammar in-
volves, and suggest some other applications of this probabilistic

approach to natural language syntax analysis.

A.l General principles of CL grammar

The CL qrammar used in the LOB Corpus project is specifically designed

to be used in tagging, that is, in assigning a grammatical-class

marker to each word in a text. In fact, the basic principles could

be generalized to apply to other levels of linguistic analysis

(parsing, semantic analysis, etc.); in general, if the analysis in-

volves assigning 'labels' to 'constituents', then a CL qrammar could

be devised for this analysis.

The CL method of grammatical analysis involves two steps:

li) Each 'constituent' is first assigned a set of potential 'labels'.

This can be done by some quite simple mechanism such as dictio-

nary-lookup; this may well mean that some of the possible labels

are in fact inappropriate in the given context, but this does

not matter, since they will be eliminated during the second

stage.

(ii) Each of the potential labels of a constituent is then assigned

a ~ , u Z n t i o s ZikeZiiroad figure, using a formula which takes into

accrilnt contextual and other relevant factors; having done this,

w e uen then choose the single 'best' label for the constituent,

and disregard all the others (no matter how many others there

happen to be).

Thus a CL grammar should not be viewed as a set of rules for genera-

ting sentences; rather, it is characterized by:

lil an algorithm for assigning a set of possible 'labels' or tags

to any given constituent; and

Cii) a general r e Z n t i v e ZikeZihood formula which can be used to calcu-

late the relative likelihood of any given label or tag in any

given context.

A . 2 The LOB CL grammar

In the CL grammar used to analyse the LOB Corpus, the 'labels' are

grammatical tags, and the 'constituents' are words (in this special

case , all the 'constituents' are at the same 'level'; but this does

not mean that CL grammar could not be generalized to deal with more

complex Structuring).

The tag-assignment algorithm is embodied in the program WORDTAG. Tags

are assigned mainly by dictionary-lookup; but since the set of

possible words in the English language is open-ended, the algorithm

also includes a number of 'default' routines to deal with words which

'fall through the net' (as explained in Leech et O Z .) . This means

that the tag-assignment algorithm can he used to assign a set of

potential tags to an3 word, and this set will almost always include

the 'intuitively correct' tag.

Probably the most innovative part of the LOB CL grammar is the gene-

ral reZotiue l i k e l i h o o d formula used by the 'tag-disambiguation'

program CHAINPROBS. When a word has been assigned more than one

potential tag, this formula is used to find the relative likelihood

of each candidate. We have found that a very simple formula, taking

into account only the immediate context, will correctly choose the

'best' tag in c. 96-97% of all cases lmo~eovcr, this high success

rate is consistent regardles~ of style: novels, newspapers, magazines,

etc. all have approximately the same success rate). Section B explains

the Tag Relative Likelihood formula in greater detail.

A.3 Other applications of CL grammar

The CL-grammar approach to language analysis was developed speclfl-

cally for the LOB Corpus Grammatical Tagging research project. How-

ever, it ha5 become clear that this methad of analysis has many other

possible areas of application. The two main advantages of CL grammar

over other methods of natural language analysis are:

111 C e n e r a L i t y and robuatneee: 'Rule-based' analysis algorithms

tend to work only with sentences that 'follow the rules', and

wlll fail if presented with 'non-standard' English, accidental

misspellings, or other 'deviant' input. Unfortunately, as become

clear when researching with a large corpus, 'real-life' English

texts are often dotted with many of these 'imperfections'! In

Contrast, the LOB Corpus Tagging programs are extremely general

and 'robust', since they will produce a reasonably acceptable

analysis of an# input (they have successfully dealt with news-

paper 'telegraphese', 'foreigner English', Sci-Pi neologisms,

and even a 'humorous' text peppered with d e z i b e r o t e mis-

spellings!).

liil Simplicity: Most syntax-analysis programs build a complex 'parse

tree' for each sentence, which requires much complicated and

time-consuming computation. CL grammar, on the other hand, in-

volves analysis at a 'local level' only; the tag-likelihood

function looks at the immediate context only, not at a whole

sentence; and even within this localized context, the computa-

tion is very straightforward. This means that the amount of

computation is much less; the analysis is much simpler and

faster.

These advantages make CL grammar particularly suitable for applica-

tions requiring a simple and fast analysis of a wide range of possible

linguistic input. In sections C, 0, and E I shall look briefly at

three potential uses of CL grammar; a spelling and grammar 'checker'

for use in Word Processors, a speech analysis program for converting

from spoken to written English, and a general Grammatical Parser for

the LOB Corpus.

B THE LOB TAG RELATIVE LIKELIHOOD FUNCTION:

110P1 WE DEVELOPED THE FOPSlULA

To glve the reader a clearer idea of how 'likelihoods' are calculated

~n a CL grammar, I will attempt in this section to explain the Tag

Relatrve Llkellhood Functlon used in tagging the LOB Corpus; I will

do this by explaining stcp hy step how we developed the mathematical

formula.

B.l A formalism for words and tags

The programs before CHAINPROBS (where the likelihood formula is

applied) divide the texts of the LOB Corpus into records, where each

record contains a single word and a set of potential tags, and each

record has a unique reference number (in fact, each record is a

separate line of text; but I prefer the tern 'record' (rather than

'line'), since this avoids confusion (different words which were on

the same line in the original Corpus are in different recordsll. If

we denote the record-number by r, the word by W<=>, and the set of

tags hy T<r,l>, T<r,2>, T<r,3>, ... T<r,nlrl>, where nlrl is the
number of potential tags in the record r, then a typical sequence

of records from the LOB Corpus is:

record-no. word tags

r-l W<r-l> Te-l,l>, T<r-1,2>, . . . T<r-1,nIr-ll>
r W<r> T<r,l>, T<r,2>, ... T<r,nlr)>
r+l W<r+l> T<r+1,1>, Te+1.2>, ... T<r+l,n(r+l)>

B.2 Relative and absolute likelihood

CHAINPROBS assigns a percentage likelihood figure to each tag in a

record. This percentage is the relative likelihood of the tag, rela-

tive to all the other potential tags in the record. The relative

likelihood 1 of a tag T e , a > is the abaoZute likelihood L of that tag,

divided by the sum of the absolute likelihoods of all the potential

tags in the record r:

I IT<r,a>) = L(T<r,a>)

8.3 'Factorizing' likelihood: L = Lb * Lf r LW

The absolute likelihood function must now be defined. Ideally, we

would like this function to take into account nZZ relevant contextual

information; this would be the 'perfect' absolute tag-likelihood

function. Unfortunately, it is not immediately apparent exactly whit

such a fonnuli! should look like. However, we can work towards this

'perfect' formula, step by step: first we must write some simple

formula which approximates to the 'ideal'; then, we can add on extra

Eactors to take into account more peripheral information.

TO begin with, we can say that the absolute likelihood of a tag is

dependent on the ' b a c k w a r d contest' (i.e. the preceding tags) and the

' f o r w a r d context' (i.e. the following tagsl; this allows us to sepa-

rate out ' b a c k w a ~ d Z i h e Z i h o o d ' Lb and ' f o r w a r d Z i k e Z i h o o d ' Lf. Anothe:

important factor in deciding the likelihood of a tag is of course

the word it is to be assigned to: for example, with the word "water",

the tag NN (noun1 is likelier than the tag V 2 (verb). Thus the

absolute ?iRelihcod formula must also take into account LW, the

' A ' . J Y Z - L O ~ L i k e Z i l t o o L ' .

The simplest formula for absolute likelihood which takes these three

factors into account is:

(where represents multiplication). This is our first approximation

to a 'perfect? likelihood function.

B.4 Tag-palr bond B

TO calculate the likelihood of a tag T a , a > , let us assume to begin

with that the records immediately before and after r each have only

one unambiguous tag. Furthermore, let us assume that the only thing

relevant in the 'backwards context' is the single tag in the pre-

vious record, Ttr-l,l>; and likewrse that the only relevant factor

in the 'forward llkellhood' is the tag T<r+l,l>.

Thls means that the 'backward lzkellhood' can be defined as smply

the ' b o ~ i t i ' between Te,a> and the preced~ng tag Te-l,l>; and l~ke-

wlse, that LE 1 s smply the ' b o n d ' between T<r,a> and Ta+l.l>:

Values of the tog-pair bond function B are stored in a table with a

TOW and column for every tag in the LOB tagset.

The 'bond' between a pair of tags Tl, T2 is dependent on the freguen-

cy of cooccurrence, f(Tl,T2), compared ta the frequency of occurrence

of each tag individually, f(T1) and f(T2). These statistics must be

extracted from texts which have already been tagged unambiguously

(in the LOB Corpus Grammatical Tagging project, we extracted these

figures from the Brown Corpus initially (making adjustments where the

tassets differ). but later statistics include figuree drawn from the

first sections of the LOB Corpus to be analysed).

B.5 Calculating values of B for each tag-pair IT1,TZ)

If tags were combined randomly 1i.e. if context had no influence on

the choice af tag with a word), then the I'random') probability of

tag T1 being followed by tag T2 would be

lN1.i~ a constant, dependent on the number of tags in the sample.)

The actual ('true') probability of the tag-pair ITl,T2) is

IN2 is another constant.)

If we divide P<truc> by Pcrandom,, we get a very simple measure of

the 'correlat~on' or bond between T1 and T2; ignoring the constant

factor (N1/N2) we get the formula:

The value of BlT1,TZ) for any tag-pair (T1,TZ) is thus dependent on

the sample from which the frequency statistics are derived, so clear-

ly it is important that the sample is representative, and reasonably

large. However, even with a very large sample, we cannot be certaln

that the figures are perfect, especially if a particular frequency

figure happens to be very low or zero; for example, if for a given
sample f(DT,DODl=O, does this mean that the tag-pair (DT,DOD) can

n e v e r cooccur in English, or is this simply a failing of this parti-

cular sample? It is safer to assume the latter; so we must add a

constant kl to nZZ tag-pair frequency figures, to ensure that all

values are greater than zero. Similarly, we should add a constant k2
to all single-tag frequency figures, to ensure that we can never

divide by zero. Thus, the new definition of B is

B.6 Word-tag likelihood LW

'Word-tag likelihood' is the likelihood that a given word will have

a given tag, regardless of other factors. Dictionary-lookup (or

equivalent mechanisms1 can give us a very crude measure of LW: if

the tag occurs with the word in the dictionary, then Lw is 1, other-

wise 0 (e.g. L~('~the".ATIl=l, but Lw~'~the'~,VBl=Ol.

In the LDB Corpus CL grammar, we found that this 'binary' likelihood

funct~on was too crude and simplistic, so we included four 'levels'

of word-tag likelihood. The 'binary' values of Lw, 0 and 'l, are im-

p l i c i t l ~ assigned by straightforward dictionary-lookup, as explained

above; in addition, the Wordlist used in the LOB Corpus CL grammar

has two e s p l i ~ i t LW 'weighting markers' l @ and 91: if a tag appears
with a word only rarely, then that tag is marked C, and if the tag

is veru rare with a given word, it is marked %, for examp1.e:

alert JJ VB NNP

watsr NN VB%

major JJ NNB VB%

(Not~onally @ means that the tag appears with the given word in 10%

or less of all uses, and % means 1% or less. In fact often the

assignment of weightings was based on 'intelligent guesses', particu-

larly wlth rare words; this is one reason why we decided to limit

ourselves to only four 'grades' of word-tag likelihood (this decision

has since been vindicated by the consistently high success rate of

the tagging programs: it is clear that a much more 'refined' system

of gradations of LW is unlikely to improve tagging results very

These weighting-markers appear in the LOB WORDLIST, SUFFIXLIST, and

IDIOMLIST, and are assigned by WORDTAG (end IDIOMTAG). In fact,

within the theoretical framework of a CL grammar, the assignment of

these weightings is not a necessary part of the tag-assignment

algorithm; more correctly, it 'belongs' with the mechanism for calcu-

lating tag likelihoods. In other words, if the two tasks of

lil assigning potential tags to each word, and

(ii) calculating likelihoads for each potential tag

were autonomously dealt with by WORDTAG and CHAINPROBS respectively,

then the @and B 'weighting-markers' would not be assigned by WORDTAG;

instead, every time CHAINPROBS applied the tag-likelihood function

to a tag, it would have to find the appropriate value of LW for that

word-tag combination. Of course, this would require exactly the same

word-tag lookup algorithm as was used by WOROTAG to assign the poten-

tial tag in the first place; so, to save time, WORDTAG assigns potcn-

tial tags a n d LW weighting-markers (where appropriate) in a single

search.

B.7 Generalizing the formula to deal with ambiguous contexts

Thy formulae for Lb and Lf given in 8.4 assume that the records

immediately before and after the current record are unambiguously

tagged, so that in working out the likelihood of tag T<r,a> the only
tags we need take into account are T<r-1.1) and T<r+l,l>. However,

if either of these records are in fact o m b i g u o u o , we must take the

other tags into account also. For example, if the immediately pre-

ceding record is ambiguously tagged, then the formula for b o c k w a r d

Z i k e Z i i t o o d Lb must take into account not only T<r-l,l>, but also all

the other potential tags in record r-l: T - 2 T - 1 3 ...
TO-l,n(r-l)>.

For each potential preceding tag T<r-l,i>, we must take into account

the b o n d between T<r-l,i> and T<r,a>, 'weighted' by the Backward

Likelihood in turn of T<r-l,i>, and also the Word-Tag Likelihood LW

of T<r-l,i>. Thus, b a c k w a r d l i k e l i h o o d must be redefined as a re-

cursive function:

F O F W ~ P ~ ZikeZihaad must also be redefined, so it can deal with sequen

ces of tag-ambiguities:

Notice that the recursive definition of Lb means that the bnokward

Z ikat ihood of a tag T<r,a> theoretically takes into account oZZ tags

preceding T<r,a>; however, in calculating ~ e t o t i v e likelihood, the

set of possible 'backward contexts' before the last unambiguoun tag

is the same for all the potential tags in record r, so this can be

"cancelled out". Similarly, forword ZikeZihood recursively defined

should theoretically involve oZZ tags after Ta,a>; but in calcula-

ting reSat - ive likelihood all bonds after the next unambiguous tag

"cancei out" and can thus be ignored.

In other words, when calculating the relative likelihood of any tag

using the general formulae for Lb and Lf, we need only 'look back'

as far as the t o o t unambiguouo t a g , and we need only 'look forward'

as far as the n a z t unornbiguoua t a g . In general, tags are 'disambigu-

ated' by looking onZy at the words in the irnrnediote c o n t e r t .

B.8 The relative likelihood function

As an example, let us take a sequence of five records, with five con-

secutive words: A, B, C. D, E; and with tags: a, h, b', c, c', d. d',

e (the ilrst and last records are unambiguously tagged, while the

lnterrnedlate records have two tags each):

r e c o r d no. word t a g s

To show how t h e formulae a re a p p l i e d , l e t u s c a l c u l a t e l l d) , t h e

r e l a t i v e l i k e l i h o o d of t h e t a g d. The formula from 8 . 2 t e l l s u s

L l d) and L (d ') can be expanded u s i n g t h e formula from 8.3:

Applying t h e r a c u r s i v e formulae f o r Lb and Lf from B.7 , t h e s e equa-

t i o n s expand t o :

we can thlnk of a term such as

as a chain, represented by [abcdel. This notational simplification

allows us to rewrite the equation for the relative likelihood thus:

lldl = L(d1

Lldl + L(d'1

= [abcde] + [ab'cdel + [abc'del + [ab'c'del

[abcde] + [ab'cdel + [abc'del + [ab'c'dcl
+ [abcd'el c [ab'cd'el + [abc'd'e] + lab'c'd'el

= (SUM OF ALL POSSIBLE 'CHAINS' FROM a TO e THROUGH d)

(SUM OF ALL POSSIBLE 'CHAINS' FROM a TO el

This can be generalized to give us the relative likelihood of any

tag T in terms of 'choina':

1lTl = (sum of all possible 'chains' from the last unambiguous tag

to the next unambiguous tag THROUGH TAG Tl

(sum of all possible 'chains' from the last

unambiguous tag to the next unambiguous tag)

CHAINPROBS actually uses a definition of the likelihood function in

terms of 'chains', since it is computationally more efficient; but

this new definition is entirely equivalent to the likelihood formulae

previously given.

B.9 Modifying the 'one-step' formula in special cases

SO far, we have assumed that the tag-likelihood function is a

Flrst-Order Markov process: we have assumed that a 'chain' is com-

posed of a sequence of independent 'links', bonds between poira of

tags. In trials on a sect~on of the LOB Corpus lover 20,000 words),

we found that the formulae above correctly yielded the 'best' tag

for C 93-948 of words; 50 the 'one-step' function is in fact a very

close approximation to the 'perfect' likelihood function (we were

actually qurte surprised that such a simple set of formulae coulcl be

However, among the errors in the remaining 6-7%, there were a

significant number of cases where the function clearly needed to

look two tags backwards or forwards (rather than just one) to calcu-
late the likelihood of a 'link' in a 'chain'. These exceptional cases

fell into two main categories:

(il tag-sequences involving a "noise-tag" such as RB (adverb), e.g.

in

"she began to seductively reveal herself"

PP3A VBD TO RB VB PPL

the forward likelihood of TO is much more dependent on VB than on RB,

and the backward llkelxhood of VB is more dependent on TO than RB.

In effect, when calculating the likelihood of the tag-sequence, we

would like to 'ignore' the "noise-tag" RB.

(ii) tag triples around CC (coordinating conjunction), of the form

T<a> CC T<h> : Tag-triples in which T<a5 and T are in fact the

same tag (e.g. NN CC NN, JJ CC JJI are far likelier than tag-triples

in which T<a> and T differ (e.g. JJ CC NN).

The 'one-step' likelihood function can be used to calculate a

likelihood figure for any sequence of three tags T1, T2, T3.

essentially by multiplying B(Tl.T2) r B(TZ,T31. In a few special

cases, this tag-triple likelihood must be modlfied by a t a g - t r i p L e

~ c o l i n g f o c t o r , S(Tl,TZ,T3). These special cases are ones where the

overall likelihood of the tag-triple depends on the 'bonding' of

T1 and T3, rather than B(T1,TZ) and B(T2,T3).

8.10 Summary of the final formula

HOW is S(Tl,TZ,T3) to be incorporated into the likelihood formulae?

If the immediate context were assumed to be unambiguous, we could

simply add a new factor to the formula for absolute likelihood

(L('r<r,a>) :

To be able to deal with ambiguous contexts, we must generalize this

formula to:

The formulae for Lb and Lf must be similarly modified to take S

lnto account. The above formula for L is considerably more complex

than that of 8.3. However, since S(Tl,TZ.T3) only 'comes into play'

In a few special cases, the extra computation is often redundant.

There is an alternative (equivalent) formula which is computationally

much more efficient (even though the formula looks more complicated

at first sight); it contains a separate factor dealinq with S, which

'cancels out' to 1 land can thus be ignored) in most cases. This

formula is given below, in the following summary of the LOB CL

Grammar tag likelihood formulae:

R e l a t i v e Z i k e l i h o o d :

A b o o l u t e L i k e l i h o o d :

L tT<r ,a> l = L b l T < r , a > l t L f IT<r .a: l i LwtW:r>,T<r,a)l t

Backward Z i k e Z i h o o d :

Forward likelihood:

Lf IT<r,a>) =

j-l. . " W + l)

The a l t e r n a t r v e d e f i n i t i o n of r e l a t i v e l ike l ihood i n terms of

' c h a i n s ' i s now:

11T) = sum of a l l poss ib le 'CHAINS'

FROM t h e LAST unambiguous t ag

not i n t h e middle of a ' spec ia l case ' t a g - t r i p l e

TO t h e NEXT unambiguous t ag

not i n t h e middle of a ' s p e c i a l case' t a g - t r i p l e

THROUGH TAG T

sum of a l l poss ib le 'CHAINS'

FROM t h e LAST unambiguous t a g

not i n t h e middle of a ' s p e c i a l case ' t a g - t r i p l e

TO t h e NEXT unambiguous t ag

not i n t h e middle of a ' s p e c i a l case' t a g - t r i p l e

8 .11 P ~ t e n t l a l f o r f u r t h e r Improvement

The cu r ren t success r a t e of CllAINPROBS is cons i s t en t ly 96.5-978.

T h c o r c c ~ c a l l y this could be rmproved by addrng f u r t h e r f a c t o r s t o

the formulae, takxng mare contextual l n f o r m a t ~ o n i n t o account by

g o ~ n g beyond the simple 'Augmented Flrst-Order Markov' model (CL

Grammar is l d c a l l y s u ~ t e d t o 'enhancement through feedback ') .

However, the law of diminishing returns suggested to us that it

would probably be easier simply to correct remaining tagging-errors

'by hand' than to spend time and effort enhancing the formulae

further (at least, this is quicker in the short term, for the

immediate task of tagging the LOB Corpus; for new corpora, improve-

ments may well be worthwhile).

The types of construct in which the remaining errors tend to occur

are listed in the Manual Postedit Handbook (Atwell e t a t .) . In

general, many of these problem-cases call for 'higher-level' gramma-

tical or semantic analysis, which would require major enhancements

of the present tagging programs. Nevertheless, we feel that our

remarkable success rate using such a simple model of language is

highly significant.

C ADAPTING THE LOB CL GRAMMAR TO DETECT SPELLING AND GRAMMATICAL
ERRORS

As explained in section A, the LOB Grammatical Tagging Program5

perform a Very simple grammatical analysis of input texts. This

'surface' approach makes the programs much faster than 'full-blooded'

parsers; so they are ideally suited to applications where a 'basic'

level of grammatical analysis is all that is required.

One such application is in the automatic detection of spelling and

grammatical errors in input English texts. In this section, I shall

explain how the current LOB Grammatical Tagging programs have been

superficially modified to detect such errors in a short sample text;

and I shall discuss what further research is required to produce an

efficient general-purpose a u t o m a t i c e r r o r - d e t e c t i o n program for

commercial Word Processing applications.

C.l Current 'spelling-checkers' do not look at context

A number of programs are currently available which claim to 'check

spelling' in English texts. However, these programs are limited to

simple dictionary-lookup: each input word is checked against a large

Lexicon, and any word not found is assumed to be misspelt. Unfortuna-

tely, this simple method allows many errors to 'slip through' un-

detected: if a misspelling happens to coincz.de with another valid

word (as in "I now how to prophecy the whether!"), then it is

accepted.

Errors such a5 'nowa', "prophecy", and "whether' in the example coutd

be detected by simple grammatical analysis: for example, the sub-

ordinating conjunction "whether" is easily confused with the noun

"weather"; and a noun is much likelier than a subordinating conjunc-
tlon in the context

' l . . . the X!"

so "whether" is probably a misspelling of "weather" in this context.

C . 2 Adapting the LOB Grammatical Tagging Programs

Notice that this sort of error can be detected simply by comparing

relative likelihoods of word-tags; no higher level of grammatical

cnalysis is required. Clearly the LOB CL Grammar is ideally suited

to this kind of analysis. Only a few superficial modifications were

needed to convert the current Grammatical Tagging Programs into a

prototype 'context-sensitive' spelling-checker (these mainly related

to input/output formats).

More important than the adjustments to the programs was the change

in the role of the wordlist. In Grammatical Tagging, wordlist-

lookup is just one of several methods of tag-assignment available

to WORDTAG: there were a number of 'default' routines for words not

found in the wordlist. In a spelling-checker, these 'default'

routines are not required, in fact, they must not be used at all:

if a word is not found in the wordlist, then we can assume it is a

misspelling immediately, without the need for 'context-compatibil~ty'

checking. Therefore, the Lexicon of a spelling-checker must be much

larger than the current LOB wordl~st.

Another difference is that each entry in the Lexicon must not only

contaln a word's 'own' tags, but also the tags of any similar words,

the error-togn. For example, in the sentence given above ("I now

how to prophecy the whether!"), the misspelt word "prophecy" can be

detected by grammatical analysis onZy if we know that it is a noun,

and that there exists a very similar verb ("prophesy"); so the

Lexicon entry for "prophecy' must give not only the word's 'own'

tag NN, but also the error-tag VB:

I+ORD TAGIS) ERROR-TAG IS l

prophecy MN VBE

Note that errar-tags are marked with E to distinguish them from 'own'

tags.

C.3 Trial run of the adapted LOB tagging programs

TO put the theory to the test, a short text was devised, full of

deliberate spelling mistakes which could ant(/ be detected by gramma-

tical analysis. Also, a sample Lexicon was compiled, with an entry

for each word in the text. This text was then processed by the

adapted LOB tagging programs:

(i) VERTICALIZE put each word on a separate line (record), and

also tagged punctuation marks (so these do not have to be in-

cluded in the Lexicon)

(ii) WORDTAG assigned a set of tags and error-tags to each word,

by Lexicon-lookup (any word not found in the Lexicon can be

marked as an error at this stage)

(ili) CHAINPROBS used the Tag Likelihood function to choose the

'best' tag for each word; if an error-tag (marked £) was

chosen, then this indicated a probable misspelling

(iv) LOBFORMAT (renamed MARKERRORS) 'rehorizontalized' the text,

writing the message "ERROR?" underneath all words which had

been 'error-tagged'.

The output from this trial run is shown in Appendix A. Almost all

the errors in the text are flagged; but none would be uncovered by

current 'spelling-check' programs.

C.4 From prototype to general-purpose program

Much research still has to be carried out to transform a 'prototype'

into a general-purpose spelling-checker for commercial Word Processing

packages :

li) Compile a very large wordlist, much bigger than the current

LOB wordlist.

(ii) Modify the LOB Tagset (and Tag-Pair Bond function tahle): the

number of tags in the current LOB Tagset is 134, but experience

has shown that many tags could be 'merged' or eliminated with

little loss of accuracy (many of the finer distrnctions drawn

in the LOB Tagset are linguistically interesting, but not

required for spelling-checking); this makes the program much

smaller and more effrcient.

(iii) A set of potential tags must be added to every word in the

Lexicon: this can he done by running WORDTAG over the untagged

Lexzcon, and then 'manually' checking the decisions reached.

(iv) We must design an algorithm to discover, for each word in the

Lexicon, a set of 'similar' words. This algorithm must find

words whlch have very slmilar spellings to the 'target' word

(e.g. now is a common 'typo' misspelling of k n o w) ; and also, it

must find words which can easily be confused hecause they sound

the same (e.g. there vs. their).

Using this 'similar-word-finding' algorithm, every word in the

Lexlcon must be assigned a set of error-tags: first, a set of

similar words is associated with each 'targct' word; then, the

tags from these similar words become the error-tags of the

'target' word.

(vi) The current LOB Tagging programs were originally written to be

run on University Mainframe computers, and we paid scant

attention to questions of speed and efficiency; the programs

contain a number of routines which, in the light of experience,

are clearly not necessary in a spelling-checker (for example,

the programs are designed to collect large amounts of statisti-

cal feedhack; but once a satisfactory success level is achieved,

t h ~ s Will not be needed). Everything but the essential 'core'

of the analysis can be cut out, and the suite of programs can

be combined into one single program, performing the analysis

in a single pass. In effect, then, the LOB CL Analysis suite

must he completely rewritten, to make it much faster and more

efficient.

C.5 Checking grammar and style

So far, we have only discussed opelZing errors which can be detected

by grammatical analysis. In essence, such errors are detected because

the misspelling causes an incongruity in the grammatical structure

of the sentence; the position of the incongruity is marked by the

warning message "ERROR?", which is to be interpreted as a spelling-

error.

In general, though, any striking grammatzeal incongruity is liahle

to be marked by the warnrng message "ERROR?"; and although up till

now we h2vc assumed this indicates a spelling-error, this is not

necessarily so: the user of the system must be aware that this warn-

ing may be triggered by e grommotical infelicity (for example, if a

word is not just misspelt, but accidentally missed out altogether,

then if an 'ungrammatical' sentence results, an "ERROR?" warning will

be triggered.

Rather more insidious and problematic than blatantly 'incorrect'

grammar is the use of obscure and unnecessarily complex grammar,

which can make documents unintelligible; thls is a problem of ntyle

rather than simple qrammatlcality. Fortunately, the spelling-check

program is readily adapted to check 'grammatical style' as well.

Currently, the tagging programs choose the 'best' analysis by compa-

ring the peZotiue Likelihoodn of alternative analyses. A fairly

simple modification would allow us to eliclt an obnoZute ZikeZihood

figure for the 'best' analysis of each sentence (normalized to fall

wlthin the range 0 to 1). This figure amounts to a measure of

' g ~ o m m n t i c a Z deviance': sentences with a normalized absolute likeli-
hood of nearly 1 have simple, 'ordinary' grammatical structure,

while sentences with a normalized absolute likelihood near zero are

highly 'deviant'.

Thus,the 'Automatic Text-Checker' will not only mark out blatant

errors in spelling and grammar, but it will also grade sentences

along a sliding scale according to 'grammatical devrance' (sentences

which fall below an 'acceptability threshold' (chosen by the user1

can even be specifically marked out). word Processors equipped with

this Automatic Tcxt-Checker will hopefully encourage the use of

Plain English in official and business documents!

D CL GRAMMAR IN SPEECH SYNTHESIS AND ANALYSIS

Converting between written and spoken English is a trivial operation

for humans, but has proven extremely difficult for computers. CL

Analysis may prove a useful tool in tackling this problem.

D.l Grophemlc to phonemlc transcription

It is generally agreed that an important stage in speech synthesis

is the translation of ordrnary written text into some phonetic form,

in which each symbol corresponds to some specific sound. Some simple

speech-synthesis systems have a straightforward dictianary-lookup

algorithm to do this, using a dictionary which gives a single phone-

tic equivalent of each written word. A more refined version of this

algorithm also has a 'default' rule-system to translate wards not

found in the dictionary, so that any input word can be assigned a

phonetic transcription; this is analogous to the default routines in

WORDTAG, which ensure that any input word is assigned a set of

potential tags.

tinfortunately, some words turn out to be 'ambiguous', in that they

can have varying pronunciation and/or stress, depending on their

grammatical function, e.g. :

"John wanted to =cad the paper"

VS.

"Has he r e a d it yet?',

"She seems to r e j e c t all my advances"

vs.

''I put the eject in the dustbm"

A grammatical tagging algorithm could be used to disambiguate such

examples. The great advantage of CL Analysis is that we do not have

to analyse a whole sentence, but only the immediate context; a

'Grapheme-to-Phoneme Transcription' program could 'turn on' the CL

tagging and disambiguation algorithm whenever such an ambiguity

arose, but keep it 'turned off' the rest of the time.

However, if we wish to include sentence intonation in our phonetic

transcription, then grammatical analysis of the whole sentence

clearly ia required. For this, the CL Grammatical Parser to be

described in Section E would be a useful tool.

D.2 Speech analysis in terms of constituent-likelihood analysis

CL Analysis plays an even more important part if we view the whole

process of speech analysis, from sound to written form, in terms

of 'tagging', that is, assignment of 'labels' to 'constituents'.

The first step in speech analysis is to convert 'raw' sound into a

digltal form which can be readily manipulated by digital computer

(the Lancaster University Linguistics Department has an ACT Sirius 1

computer whlch has this facility). Next, this 'digital sound' must

be converted Into a sequence of phonetic symbols; and then, the

sequence of phonetic symbols must be converted into normal written

English. Yowcver, these two conversion processes are far from trivi-

al. The 'units' of speech sound (phones1 are of variable length

(e.g. a vowel sound is longer than a plosive), and also, the 'same'

utterance recorded several times will yield a slightly different

digital recording each time. This leads to uncertainty and ambiguity

in the phonetic transcription of a digital recording af an utterance.

Moreover, even if we could be sure of choosing the correct phonetic

transcription, converting this to normal written English is still a

big problem. Again, the 'units' are of variable length (unlike

written English, spoken utterances generally have nothing like a

space at every word-boundary). Also, there is another level of

ambiguity, e.g. make up and ma!, clip may both be valid interpretations

of a given phonetic transcription.

T h l ~ second level of ambiguity can only be resolved by grammatical

analysis: the 'best' interpretation must be chosen on the basis of

contextual compatibility. Clearly, this problem can be tackled in

terms of CL Analysis:

(i) given a phonetic transcription of an utterance, assign a set

of potential written English interpretations; then

(ii) assign a likelihood to each potential 'labelling' or grapheme-

string, Using a Likelihood Function (L<g>) which measures the

internal grammatical consistency of the grapheme-string in terms

of the contextual compatibilities of the constituent graphemes

(so that grapheme-strings which constitute 'grammatical'

sentences are assigned higher likelihoods than grapheme-strings

which involve grammatical inconsistencies).

In fact, the first level of ambiguity, encountered when moving from

digital recording to phonetic transcription, can also be dealt with

in terms of CL Analysis:

(i) given a digital recording of an utterance, assign a set of

potential phonetic transcriptions; then

(ii) assign a likelihood to each potential 'labelling' or phone-

symbol-string using e Likelihood Function (L<p>) which measures

the intei-nal lexical consistency of the phone-symbol-string in

terms of the contextual compatibilities of the constituent

phone-symbols (so that phone-symbol-strings which constitute a

sequence of valid lexical items (words) are assigned higher

likellhoods than phone-symbol-strmgs which involve non-existent

'words') .

A great advantage of this approach is that it allows both levels of

dis8mbi9uatlon to be combined in an integrated analysis algorithm:

we can calculate the overall likelihood that a particular grapheme-

string 1s the correct interpretation of a given drgital recording,

simply by multiplying L<p> by L<¶>. This is useful for two reasons:

(i) the 'best' phonetic transcription of a digital recording may

turn out to be grammatically inconsistent, while a 'less likely'

phonetic transcription (rejected during the first stage of dis-

ambiquationl might have had some graphemic interpretation which

is grammatically 'acceptable'. In other words, if the two

stages of disambiguation are separate, we may eliminate some

of OUT options 'too early'; by disambiguating only on the basis

of 'overall' likelihood, we are effectively hedging our bets

until oZZ relevant factors have been taken into account.

(iil The division of the problem of speech analysis into two main

subtasks, as described above, is in fact contentious; for

example, many linguists would say that the transition from

phonetic transcription to phonemic transcription is an important

separate subtask. However, if the aim of the CL Analysis is to

assign some 'overall' Likelihood figure to any given mapping

between digital recording and grapheme-string, then it does not

really matter how many subtasks this 'overall' process is

divided into: the 'ovsrall' Likelihood is aimply a product of

a number of factors, one for each subtask.

0 . 3 A CL Grammar of spoken English

The CL Grammar used by the LOB Corpus Tagging program suite is based

on statistics derived from written English texts (initially, texts

from the Brown Corpus). In a sense, we can say that the CL Grammar

was 'extracted' from these texts: although w e decided upon the tagset

(using 'intuitive' knowledge of the important grammatical word-

classes of Englishl, the texts provided the frequency statistics

which constituted the 'rules' of syntactic patterning.

The grammar of spoken English is statistically different from the

grammsr of written English (for example. written English tends to

include lrorc lengthy, complex sentences); the CL approach allows us

to quant~ty these differences systematically. First, a Corpus of

spoken Enqllsh is needed (the London-Lund Corpus of Spoken English

could be used, or alternatively, if a sufficiently general and robust

speech-analysis program could be devised, we might even compzle a

new Corpus using this program (the actual compilation of this new

Corpus would serve as a very thorough 'test' of such a program!).

This Corpus must then be grammatically analyzed, by running the

present LOB Grammatical Tagging programs over it, and then 'manually'

correcting the errors (many of which will be due to the imposition

of a Written English Grammar over Spoken English). rrom the analyzed

Corpus, we can then 'extract' a CL Grammar of Spoken English, by

gathering the relevant frequency statistics. The differences between

this CL Grammar of Spoken English and the LOB CL Grammar of Written

English will be reflected in the differences in Tag-Pair Bond

function values for certain tag pairs, and also in other related

statistical differences such as the average Absolute Likelihood

assigned to a sentence.

Thus, a speech-analysis program can be used in the compilation of a

Corpus of Spoken English, from which we can 'extract' a CL Grammar

of Spoken English; and this grammar will then be very useful to

researchers in speech analysis and synthesis, since it is specific-

ally geared to spoken English. Potentially, the two fields of CL

Grammar and Speech Synthesis and Analysis have much to offer each

other.

E CL GRAMMATICAL PARSER

The current LOB Corpus Grammatical Tagging programs assign a

grammatical tag to each word in a text, showing its grammatical

function; but 'higher-level' constituents are not analysed. To do

this, we need a grommotienl parser; and it turns out that it should

be possible to perform a grammatical parse of the LOB Corpus using

algorithms very similar to those of the present tagging-suite.

E.1 Tags and hypertags

In general, each tag in the LOB Tagset can only appear in certain

syntactic (syntaqmaticl positions, for example:

AT (article) comes et the start of a Noun Phrase;

IN (preposition) comes at the start of a Prepositional Phrase;

CS (subordinating conjunction1 comes at the start of a Subordinate

Clause;

. (full stop1 come5 at the end of a Sentence;

MN (singular common noun) comes

(il at the start of a Noun Phrase or

(ri) at the end of a Noun Phrase or

(iiil within a Noun Phrase or

(ivl as a Noun Phrase in its own right (i.e. start ond end of a

Noun Phrase1

These syntactic positions within higher-level constituents can be

symbolized by 'higher-level tags' or h ! j p e r t o g e . By analogy with the

present WORDLIST (a list of words and their possible tags), we could

Construct a TAGLIST of tags and their possible hypertags, with

entries such as

tag possible hypertags

AT [N

S1

IN [P

CS [F

NN NI N [NI [N@

PP$ [N

vs [V1 V] V@ [V@

etc.

(NB [Vldoes not include the object Noun Phrase, but only Verb-

constituents; however, [NI doee include subordinate prepositional

phrases, etc.) .

As with tags in the WORDLIST, hypertags are ordered, with @ and %

markers for rare syntagmatlc functions.

A program analogous to IVORDTAG could glve each tag in a sentence

its appropriate hypertags, as given by the TAGLIST (thrs program

would in fact be much slmpler than WORDTAG, as there are only 134

tags in the LOB Tagset, Instead of an open-ended set of posslble

words).

Sometimes, the hypertaglsl requlred isl/areI indicated better by a

particular : o m i ~ i , ~ o t i o n of tags, rather than by the tags taken indivi-

dually. For example, IN (preposition) is 'hypertagged' [P (open pre-

pos1tmnal phrase), and wDT (we-determiner) is 'hypertagged' [F[N

(open subordinate clause and open noun phrase); but the combined

taq-pair IN WDT must be 'hypertagged' [F[P [N (this is for clauses

beginning "of which...", "for what...", etc.). These 'special-case'

taq-pairs and their corresponding hypertag-pairs must be listed in

a TAG-PAIR-LIST, analogous to the current IDIOMLIST of exceptional

ward contbinations; a program analogous to IDIOMTAG could 'overwrite'

hypertags assigned by simple TAGLIST-lookup whenever a tag-pair

matches an entry in this TAG-PAIR-LIST.

Since these two 'hypertag-assignment' programs will be considerably

simpler than IVORDTAG and IDIOMTAG, it will be practicable to combine

them into a single program: each tag-pair in a text is first looked

up in the TAG-PAIR-LIST; but if no match is found, then hypertags

are assigned to the tags individually, according to the TAGLIST.

This unified hypertag-assignment program will be much more efficient,

since unnecessary lookups arc avoided, and all hypertags are assiqned

in a single pass.

Each record has now been assigned a set of potential hypertags. Next,

a program analogous to CHAINPROBS must assign a relative likelihood

figure to each hypertag in a record, using a i i y p e r t a g ZikeZihoad

f u n c t i o n very similar to the Tag Likelihood Function described in

Section B. We can then choose a single 'best' sequence of hypertags.

For example, the sentence "As I was eating my lunch I decided to

get a cup of coffee" would be hypertagged as follows:

WORO TAG HYPERTAG

as CS [F
I PPlA [NI
was BED2 [V
eating VBG V]
my PPS [N
lunch NN
I

NI
PPlA [NI

decided VBD [V]
to TO LT
get VB tvl
a AT N
CUP NN N
of IN [P
coffee NN [NI

S1

E.3 Building a syntactic parse tree

Tags have now been grouped into higher-level constituents IN, V, S,

etc.); but there are still some 'unmatched brackets'. This is

because certain tags specifically mark the a t o r t of a higher-level

constituent (e.g. CS-[F; IN-[P; AT-[N), but often there is no such

corresponding 'end-of-phrase word'.

What we need now is a program which can insert extra closing brackets

where needed. One way to find out where to add these brackets is to

try to Convert the labelled bracketing into a tree data-structure,

following simple 'conversion rules':

(i) X [Y means ' Y is the daughter of X"

lii) X 1 Y means "X is the daughter of y"

liii) X 1 [Y means "Y is the right sister of X"

(IV) X ... X is represented by a single node X if both Xs are at

same 'level' of nested bracketing and they are not sisters

. there is no l [interposing between the two Xs at t h e

oame ZeUeZ as the Xs. Note that X .. . Y (where X and Y are
different, and X is at the same level as Y but not a sister)

is invalid, since it requires a single node to be tagged both

X and Y; this is an indication that some phrase-boundary

(labelled bracketlsl) is missing.

Using such rules, we can build the following tree:

E . 4 In se r t ing missing c los ing brackets

The 'conversion r u l e s ' ca r ry on adding daughters t o a node u n t i l t h a t

node's c los ing bracket i s found; so , i f t h e c los ing bracket i s

missing, t h e node w i l l continue t o have daughters a t tached t o it

u n t i l t h e sentence-end i s reached. This means t h a t t h e r ightmost

daughters of a n 'unclosed' node a re suopect: each non-leaf node i n

t h e t r e e should have a t l e a s t one daughter (t h e f i r s t o r le f t -most

daugh te r) , but t h e nodes f u r t h e r t o t h e r i g h t could wel l be not

daughters but right-hand s i s t e r s (o r even ' aun t s ' !) of t h e 'unclosed'

node.

An example of t h i s is t h e unclosed [F node (marking a subordinate

c l ause) i n the t r e e above; i t s daughters a r e apparently

Clear ly t h i s is wrong - t h i s sequence of daughter-const i tuents could

not be a va l id subordinate c lause . The reason f o r t h i s e r r o r i n t h e

t r e e is t h a t t h e missing c los ing b racke t F] should be inse r t ed

between lunch and I, so t h a t t h e subordinate c l ause becomes

[NI [V] [NI

and t h e remaining 'daugthers ' become sisters of [P]. However, t h e

tree-building algorithm does not know t h i s , so i t c a r r i e s on addinq

daughters t o t h e unclosed [F node ins tead of t h e r o o t [S] .

Nevertheless, d e s p i t e being ' l o p s i d e d ' , t h e t r e e b u i l t i n t h i s way

is s t i l l useful . The t r e e shows u s where missing c los ing brackets

m i g h t be inser ted: f o r example, t h e t r e e becomes well-formed only

i f t h e F1 is inse r t ed a f t e r a daughter of [F.

I n genera l , an unclosed node [X with n daughters i n t h e o r i g i n a l

t r e e can be ' c losed ' i n n d i f f e r e n t ways, leading t o n d i f f e r e n t

parse-subtrees. So, i f an 'unclosed' t r e e such a s t h e one shown

above has q 'unclosed' hypertag-nodes [I i < l > , [H<2>, [H<3>, . . . , [H<q>,

where

[H<l> has n < l > daughters

[H<2> has n<2> daughters

[H<3> has n<3 > daughters

[H<¶> has n<q> daughters

then t h e r e a r e (n<l>*n<2>*n<3>* ...* nqc l ,) potentic: paroe-tress

E.5 Choosing the 'best' parse-tree

The final stage in parsing is a program which, starting from an

'unclosed' tree such as the one above, generates all possible parse-

trees and compares the likelihood of each (note the analogy with

CIIAINPROBS: this program effectively generates all possible tag-

sequences and compares their likelihoods; the difference is that now

we are dealing with trees rather than simple strings). To do this,

we must be able to associate a likelihood with a potential pnrse-

tree; thls is done using a hyper tag -node Z i k e l i l ~ o o d function Lhn

which assigns any given node a likelihood figure dependent on its

daughter nodes and their likelihoods in turn. If a node A has

daughters B, C. D:

m
B C D

then at A we must store the likelihood that BCD is a 'valid' A (the

c o n o t i t u e n t l i k e z i h o o d Lc(A,BCD) I , multiplied by the hypertag-node
likelihoods of B, C, and D in turn:

This recursive definition allows us to calculate a likelihood figure

for the root [S 1 node which takes into account all nodes and subtrees

in the parse-tree.

E.6 The phrase dictionary

Values of the Constituent-Likelihood function Lc are stored in a

Phraoe D i c i i o n o r y , which states, for each of the higher-level

constztuents (N. S, V, P, etc.), the set of possible 'daughter-

cOnstituent-~equence5', along with the relative likelihood of each

poss~ble sequence. For example, the Phrase Dictionary will tell us

that, in a subordinate clause (hypertagged [F]), the following

daughter-constituent-sequences are very likely:

CS [NI !V1 [N I

CS IN? [v1

; the following sequences are less likely, but still possible:

; but the following sequences are very unlikely:

Any daughter-sequences not found in the Phrase Dictionary get a very

low default probabil~ty (just above zero); in this way, we are

ensured of oome analysis for any sentence (the analogy in CFIAINPROBS

is that the Tag-Pair Bond function always has a value greater than

zero, to ensure that no potential tag is ever assigned a zero likeli-

hood; see Section B.5).

E.7 A parse in three passes

TO summarize, the CL Grammatical Parser outlined above will build a

syntactic parse-tree in three passes. First, every tag in a text is

assigned a set of potential hypertaggings, using a tag-poir-Zist

and tagziot. Secondly, the set of hypertags at each tag ia disambigu-

ated, by eliminating a11 but the likeliest hypertag-sequence; this

is done using a hypertng-Likelihood function very similar to the

tag-likelihood function currently used by CHAINPROBS. Thirdly, this

'disambiguated' hypertag-sequence is converted into a set of poten-

tial paree-trees, where each potential parse-tree has the missing

closing brackets inserted differently; a hype~tog-node ZiksZihood

function is used to compare likclihoode of competing potential parse-

trees.

In the final output, it will probably be useful to include not only

the single 'best' parse-tree, but also a number of 'runners-up'

(say three), in case the 'best' parse is found to be incorrect in

postediting. This can he done quite easily, if we adopt an output

format similar to that shown in Section E.3: there are columns for

word, tag, and hypertng; and in addition, we need three more columns

to show the three 'likeliest' combinations of inserted closing

brackets. For example, the flnal output of the 'parse' of our

earlier example sentence might be:

VlORO TAG HYPERTAG THREE LIKELIEST PARSES

59% 39% 2%

------------------ [S
as CS [F
I PPlA
was

[NI
BED2 [V

eating VBG V1
my PPS [N
lunch NN N 1
I PPlA [NI
declded VBD
to

[V1
TO [T

get VB [V1
a AT N
c'+' NN NI
of

NI NIT]
IN [P

coffee NN [NI PINIT] PIT] P]
S l

This representation may seem difficult to understand at first; but

hopefully posteditors will soon get to grips with it. The great

advantage is of course the economy of space: to show three potential

analyses, we do not need three complete trees.

E.8 Residual problems

Finally, it must be remembered that, of course, not all sentences

will be as straightforward as the example above! There are many

problems not touched upon (e.g. when the phrase-boundary is not

explicitly marked, as in "I gave the baby milk to drink"); but then,

ony approach to syntactic parsing will encounter difficulties with

these and other stumbling blocks. The success rate of CHAINPROBS

turned out to be much higher than we expected; the lesson to be

learnt was that in the 'real' language found in a corpus, very few

'pathological cases' actually turn up: Therefore, we have every hope

that the CL Grammatical Parser will also be very successful.

F OTiiER APPLICATIONS OF CL GRAMMAR

AS explained in Sect-ion A . 3 , CL Grammar is generally applicable to

many different forms of linguistic analysis. So far we have not

explored all. the possibilities: for example, CL Analysis may also

be useful i n formal semantic analysis. Other applications will

doubtless suggest themselves as our research continues.

In general, we hope w e have shown that s t a t i o t i c n l , p r o b n b i l i s t i c

methods of analysis d o have a place in linguistzcs, and specifically

in the field of syntax. Furthermore, statistical analysis should

n o t be seen simply as a 'heuristic' to fall back on when all else

fails; CL analysis is entirely based on probabilities, and the

Tagged LOB Carpus will be overwhelming evzdence that this approach

works.

REFERENCES

Atwell, Eric Steven. 1982. 'LOB Corpus Tagging Project: Manual Pre-
edit Handbook'. Department of Linguistics and Modern English
Language and Department of Computer Studies, University of
Lancaster.

Atwell, Eric Steven. 1982. 'LOB Corpus Tagging Project: Manual Post-
edit Handbook (A mini-grammar of LOB Corpus English, examining
the types of error commonly made during automatic (computational)
analysis of ordinary written English)'. Department of Linguistics
and Modern English Language and Oepartment of Computer Studies,
University of Lancaster.

Francis, W. Nelson and Henry KuEera. 1964 (rev. eds. 1971 and 1979).
MonuaZ o f I n f o ~ m o t i o n t o Accompany o S t a n d a r d Sample of P r e s e n t -
Day E d i t e d American Engldoh, f o r Uae w i t h D i g i t a 2 C o m p u t e r e .
Department of Linguistics, Brown University.

Garside, Roger and Geoffrey N. Leech. 1982. 'Grammatical Tagging of
the LOB Corpus: General Survey'. In Stig Johansson, ed. Computer
C o r p o r a i n E n g l i n ? ~ Language R a n e a r c h . Norwegian Computing Centxe
for thc ilurnanities, Bergen.

Greene, Barbara and Gerald Rubin. 1971. A u t o m a t i c G r a m m a t i c a l
T a g g i n g of EngZioli . Department of Linguistics, Brown University.

Johansson, Stig, Leech, Geoffrey N. and rielen Goodluck. 1978. Elnnuat
of Inforrnat io , i t o Accompan!, t ire L n n ~ a ~ t e r - O s l o / R e r g ~ n C D F P U D o f
R r i t i o h E n g l i s h , f o r Uee w i t h D i g i t a l C o m p u t e r e . Department of
English, University of Oslo.

Johansson, Stig and Mette-Cathrine Jnhr. 1982. 'Grammatical Tagging
of the LOB Corpus: Predictinq Word Class from Word Endings'.
In Stig Johansson, ed. Computer C o r p o r a i n F n g l i n h Language
R a s e o r c h Norwegian Computing Centre for the Humanities, Bergen.
118-146.

Leech, Geoffrey N., Garside, Roger and Eric Steven Atwell. 1983.
'The Automatic Granmatlcal Tagging of the LOB Corpus' (pp. 13-33
in this issue of ICAXE N c w o) .

Elarshall, Ian. 1982. 'Choice of Grammatical ilord-Class without
Global Syntactic Analysis for Tagging Words in the LOB Corpus'.
Department of Coinputer Studies, University of Lancaster.

Peterson, James. 1980. 'Computer Programs f o r Detecting and Correc-
t i n g Spe l l ing Errors'. I n C o m n i u n i c o t i o , ~ ~ of t h e A s e o c i a t i o n f o r
Comput ing M a c h i n e r y , 2 3 . 1 2 . 676-87.

APPENDIX A: Output from the trial run of the prototype 'spelling-
checker'

* -
n u x o
c 4 U C
D a r n *

m 1) . L
D C

D l - 0 -
= ' - I .
a E
G. *
= = E - .

C
m " F. m
C

.v.
p. .-

m- C O 5 = O E
4. m 0 DLI
Z U _ Y C
C I I L " -

W 0 .-
. D

C 1

= m 0 ,.
n 0 U m
2 m n 3
n = m .-

W I Y
4.

- - n u - - m
.- .?

C
4-

U c
. -

C
E 3

C
5

. v -
m .-

U c 2
C. E 0

0 p. - 0 r.
1 Y

O L I a . c

nLI 4-0
Y .?E Z

..
m _ *

U
c

W - (D

m n
0 C

C f r E

h.
m C ..

C
- p . C.. .
2 0 LI ".
m p . C O r. u p .
L = O L I a - 0
Y Y L E Y O .-a
h

W ,E 6 L I
n a Y

L D
U - W

O C .
3

m T2 W

I I Y .
C . . . '. C 1

U C "7 m
5 CI 1 ..
C O E
L = . - .. E
m = C .-
- W L C =

E m
* o c c
E m r O

MATERIAL AVAILABLE FROM BERGEN

The follow~nq materlal is currently available on tape from Bergen

through the International Computer Archive of Modern English (ICAME):

~rown Corpus, text format I (without grammatical taqgingl: A revised

version of the Brown Corpus with upper- and lower-case letters

and other features whrch reduce the need for special codes and

make the material "lore easily readable. A number of errors found

during the tagging of the corpus have been corrected. Typographi-

cal information is preserved; the same line division is used as

in the original version from Brown University except that words

at the end of the lrnc are never divided.

Brown Corpus, text format I1 (without grammatical tagging): This

version is identical to text format I, but typographical informa-

tlan is reduced and the line division is new.

Brown Corpus, KWIC concordance (also on microfiche): A complete con-

cordance for all the words in the corpus, including word statistics

showing the distribution in text samples and genre categories. The

microfiche set includes the complete text of the corpus.

LOB Corpus, text: The LOB Corpus is a British English counterpart of

the Brown Corpus. It contains approximately a million words of

printed text (500 text samples of about 2,000 words).

LOB Corpus, KWIC concordance (also on microfiche): A complete concor-

dance for all the words in the corpus. It includes word statistics

for both the LOB Corpus and the Brown Corpus, showing the distri-

butlon in text samples and genre categories for both corpora. The

text of the LOB Corpus is not available on microfiche.

London-Lund Corpus, text: The London-Lund Corpus contains samples of

educated spoken English, in orthographic transcription with de-

ta~led prosodic nlarklng. It conslsta of 87 'texts', each of some

5,000 running words. The text categories represented arc spontane-

ous conversation, spontaneous canunentary, spontaneous and prepared

ordtlon, etc.

London-Lund Corpus, KWlC concordance I: A complete concordance for

the 34 texts representing spontaneous, surreptitiously recorded

conversation (text categories 1-31, made available both in com-

puterised and printed form (J. Svartvik and R. Quirk (eds.) A

Corpus o f Engl io l t C o n v e r o a t i o n , Lund Studies in English 56, Lund:

C.W.K. Gleerup, 1980).

London-Lund Corpus, KWIC concordance 11: A complete concordance for

the remaining 53 texts of the London-Lund Corpus (text categories

4-12).

The material has been described in greater detail in previous issues

of ICAME N e w o . Prices and technical specifications are given on the

order forms which accompany this newsletter. Note t h a t t h e concordan-

c e s ore now o l s o a v a i l a b l e on h i g h e r - d e n s i t y tapeo o t a t ower p r i c e .

A printed manual accompanies tapes of the LOB Corpus. Printed manuals

for the Brown Corpus cannot be obtained from Bergen. Some information

on the London-Lund Corpus is distributed together with copies of the

text and the KWIC concordances for the corpus. Users of the London-

Lund material are, however, recommended to order the recent book by

Svartvik e t a l . , S U F U ~ U o f Spoken E n g l i a h : R e p o r t on R e o e o r c h 1 9 7 5 - 0 1 ,

Lund Studies in English 63, Lund: C.W.K. Gleerup, 1982. The grammati-

cally tagged version of the Brown Corpus can only be obtained from:

Henry Kuzera, TEXT RESEARCH, 196 BoWen Street, Providence, R.I.

02906, U.S.A. The Syntax Data Corpus, which consists of part of the

Brown Corpus, with detailed syntactic tagging, can only be obtained

from: Alvar EllegArd, Department of English, University of Gothenburg,

Lundgrensgatan 7, 5-412 56 GGteborg, Sweden.

BIBLIOGRAPHICAL SURVEY

One of the main aims in establishing ICAME was 'to make possible and

encourage the coordination of research effort and avoid duplication

of research'. Since the start in 1977, material has been distributed

to a range of research institutions in many countries, and it is

becoming increasingly difficult to survey how it has been, and is

being, used. Users are encouraged to send i n i n f o r m a t i o n on pubb ico -

t i o n a , repor ta , and w o r k i n pragyeso related to the material. There

is no need to report on work contained in the bibliography in Compu-

ter Corpora i n E n g l i s h Languoge R e o e o ~ c h (ed. by Stig Johansson,

publ. by the Norwegian Computing Centre for the Humanities, Bergen

1982). An updated bibliography will be included in a later issue of

ICAME Newa.

CONDITIONS ON THE USE OF ICAME CORPUS MATERIAL

The primary purposes of the International Computer Archive of Modern

English (ICAMEI are:

(a) collecting and distributing information on li) English language

material available for computer processing; and lii) linguistic

research completed or in progress on this material;

lbl compiling an archive of corpora to be located at the University

of Bergen, from where copies of the material can be obtained at coit.

The following conditions govern the use of corpus material distri-

buted through ICRME:

1 No copies of corpora, or parts of corpora, are to be distributed

under any circumstances without the written permission of ICAME.

2 Print-outs of corpora, or parts thereof, are to used for bona

fide research of a non-profit mature. Holders of copies of corpora

may not reproduce any texts, or parts of texts, for any purpose

other than scholarly research without getting the written per-

mission of the individual copyright holders, as listed in the

manual or record sheet accompanying the corpus in question. (For

material where there is no known copyright holder, the person/=/

who original'ly prepared the material in computerized form will

be regarded as the copyright holder/s/.l

3 Commercial publishers and other non-academic organizations

wishing to make use of part or all of a corpus or a print-out

thereof must ohtain permission from all the individual copyright

holders involved.

4 The person/s/ who originally prepared the material in computerized

forin must be acknowledged in every subsequent use of it.

EDITORIAL NOTE

Further ICW!E newsletters will appear irregularly and will, for the
time being be d~stributcd free of charge. The Editor is grateful for
any rnformat~on or dacumentat~on which is relevant to the field of
COnCeL'" of ICAME.

ICAME NEWS is published by the Norwegian Computing Centre
for the Humanities (NAVFs Em-senter for humanistisk forskning)

Address: Harald Harfagresgate 31, P.O. 53, 5014 Bergen-University, Norway

